Verify
false
Share
Copied to clipboard
\left(\frac{14}{7}+\frac{2}{7}\right)\left(1+\frac{7}{6}\right)\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Convert 2 to fraction \frac{14}{7}.
\frac{14+2}{7}\left(1+\frac{7}{6}\right)\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Since \frac{14}{7} and \frac{2}{7} have the same denominator, add them by adding their numerators.
\frac{16}{7}\left(1+\frac{7}{6}\right)\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Add 14 and 2 to get 16.
\frac{16}{7}\left(\frac{6}{6}+\frac{7}{6}\right)\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Convert 1 to fraction \frac{6}{6}.
\frac{16}{7}\times \frac{6+7}{6}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Since \frac{6}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
\frac{16}{7}\times \frac{13}{6}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Add 6 and 7 to get 13.
\frac{16\times 13}{7\times 6}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Multiply \frac{16}{7} times \frac{13}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{208}{42}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Do the multiplications in the fraction \frac{16\times 13}{7\times 6}.
\frac{104}{21}\left(2+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Reduce the fraction \frac{208}{42} to lowest terms by extracting and canceling out 2.
\frac{104}{21}\left(\frac{6}{3}+\frac{2}{3}\right)\times \frac{1}{8}=\frac{3}{4}
Convert 2 to fraction \frac{6}{3}.
\frac{104}{21}\times \frac{6+2}{3}\times \frac{1}{8}=\frac{3}{4}
Since \frac{6}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{104}{21}\times \frac{8}{3}\times \frac{1}{8}=\frac{3}{4}
Add 6 and 2 to get 8.
\frac{104\times 8}{21\times 3}\times \frac{1}{8}=\frac{3}{4}
Multiply \frac{104}{21} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{832}{63}\times \frac{1}{8}=\frac{3}{4}
Do the multiplications in the fraction \frac{104\times 8}{21\times 3}.
\frac{832\times 1}{63\times 8}=\frac{3}{4}
Multiply \frac{832}{63} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{832}{504}=\frac{3}{4}
Do the multiplications in the fraction \frac{832\times 1}{63\times 8}.
\frac{104}{63}=\frac{3}{4}
Reduce the fraction \frac{832}{504} to lowest terms by extracting and canceling out 8.
\frac{416}{252}=\frac{189}{252}
Least common multiple of 63 and 4 is 252. Convert \frac{104}{63} and \frac{3}{4} to fractions with denominator 252.
\text{false}
Compare \frac{416}{252} and \frac{189}{252}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}