Solve for x
x=4
x=5
Graph
Share
Copied to clipboard
5700+270x-30x^{2}=6300
Use the distributive property to multiply 19-x by 300+30x and combine like terms.
5700+270x-30x^{2}-6300=0
Subtract 6300 from both sides.
-600+270x-30x^{2}=0
Subtract 6300 from 5700 to get -600.
-30x^{2}+270x-600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-270±\sqrt{270^{2}-4\left(-30\right)\left(-600\right)}}{2\left(-30\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -30 for a, 270 for b, and -600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-270±\sqrt{72900-4\left(-30\right)\left(-600\right)}}{2\left(-30\right)}
Square 270.
x=\frac{-270±\sqrt{72900+120\left(-600\right)}}{2\left(-30\right)}
Multiply -4 times -30.
x=\frac{-270±\sqrt{72900-72000}}{2\left(-30\right)}
Multiply 120 times -600.
x=\frac{-270±\sqrt{900}}{2\left(-30\right)}
Add 72900 to -72000.
x=\frac{-270±30}{2\left(-30\right)}
Take the square root of 900.
x=\frac{-270±30}{-60}
Multiply 2 times -30.
x=-\frac{240}{-60}
Now solve the equation x=\frac{-270±30}{-60} when ± is plus. Add -270 to 30.
x=4
Divide -240 by -60.
x=-\frac{300}{-60}
Now solve the equation x=\frac{-270±30}{-60} when ± is minus. Subtract 30 from -270.
x=5
Divide -300 by -60.
x=4 x=5
The equation is now solved.
5700+270x-30x^{2}=6300
Use the distributive property to multiply 19-x by 300+30x and combine like terms.
270x-30x^{2}=6300-5700
Subtract 5700 from both sides.
270x-30x^{2}=600
Subtract 5700 from 6300 to get 600.
-30x^{2}+270x=600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-30x^{2}+270x}{-30}=\frac{600}{-30}
Divide both sides by -30.
x^{2}+\frac{270}{-30}x=\frac{600}{-30}
Dividing by -30 undoes the multiplication by -30.
x^{2}-9x=\frac{600}{-30}
Divide 270 by -30.
x^{2}-9x=-20
Divide 600 by -30.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-20+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-20+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{1}{4}
Add -20 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{1}{2} x-\frac{9}{2}=-\frac{1}{2}
Simplify.
x=5 x=4
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}