Solve for x
x=-\frac{80}{2y-81}
y\neq \frac{81}{2}
Solve for y
y=\frac{81}{2}-\frac{40}{x}
x\neq 0
Graph
Share
Copied to clipboard
160-2x=160x-4xy
Use the distributive property to multiply 2x by 80-2y.
160-2x-160x=-4xy
Subtract 160x from both sides.
160-162x=-4xy
Combine -2x and -160x to get -162x.
160-162x+4xy=0
Add 4xy to both sides.
-162x+4xy=-160
Subtract 160 from both sides. Anything subtracted from zero gives its negation.
\left(-162+4y\right)x=-160
Combine all terms containing x.
\left(4y-162\right)x=-160
The equation is in standard form.
\frac{\left(4y-162\right)x}{4y-162}=-\frac{160}{4y-162}
Divide both sides by 4y-162.
x=-\frac{160}{4y-162}
Dividing by 4y-162 undoes the multiplication by 4y-162.
x=-\frac{80}{2y-81}
Divide -160 by 4y-162.
160-2x=160x-4xy
Use the distributive property to multiply 2x by 80-2y.
160x-4xy=160-2x
Swap sides so that all variable terms are on the left hand side.
-4xy=160-2x-160x
Subtract 160x from both sides.
-4xy=160-162x
Combine -2x and -160x to get -162x.
\left(-4x\right)y=160-162x
The equation is in standard form.
\frac{\left(-4x\right)y}{-4x}=\frac{160-162x}{-4x}
Divide both sides by -4x.
y=\frac{160-162x}{-4x}
Dividing by -4x undoes the multiplication by -4x.
y=\frac{81}{2}-\frac{40}{x}
Divide 160-162x by -4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}