Solve for t
t=2\sqrt{311}-32\approx 3.270384177
t=-2\sqrt{311}-32\approx -67.270384177
Share
Copied to clipboard
256-64t+4t^{2}=5t^{2}+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(16-2t\right)^{2}.
256-64t+4t^{2}-5t^{2}=36
Subtract 5t^{2} from both sides.
256-64t-t^{2}=36
Combine 4t^{2} and -5t^{2} to get -t^{2}.
256-64t-t^{2}-36=0
Subtract 36 from both sides.
220-64t-t^{2}=0
Subtract 36 from 256 to get 220.
-t^{2}-64t+220=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\left(-1\right)\times 220}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -64 for b, and 220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-64\right)±\sqrt{4096-4\left(-1\right)\times 220}}{2\left(-1\right)}
Square -64.
t=\frac{-\left(-64\right)±\sqrt{4096+4\times 220}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-\left(-64\right)±\sqrt{4096+880}}{2\left(-1\right)}
Multiply 4 times 220.
t=\frac{-\left(-64\right)±\sqrt{4976}}{2\left(-1\right)}
Add 4096 to 880.
t=\frac{-\left(-64\right)±4\sqrt{311}}{2\left(-1\right)}
Take the square root of 4976.
t=\frac{64±4\sqrt{311}}{2\left(-1\right)}
The opposite of -64 is 64.
t=\frac{64±4\sqrt{311}}{-2}
Multiply 2 times -1.
t=\frac{4\sqrt{311}+64}{-2}
Now solve the equation t=\frac{64±4\sqrt{311}}{-2} when ± is plus. Add 64 to 4\sqrt{311}.
t=-2\sqrt{311}-32
Divide 64+4\sqrt{311} by -2.
t=\frac{64-4\sqrt{311}}{-2}
Now solve the equation t=\frac{64±4\sqrt{311}}{-2} when ± is minus. Subtract 4\sqrt{311} from 64.
t=2\sqrt{311}-32
Divide 64-4\sqrt{311} by -2.
t=-2\sqrt{311}-32 t=2\sqrt{311}-32
The equation is now solved.
256-64t+4t^{2}=5t^{2}+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(16-2t\right)^{2}.
256-64t+4t^{2}-5t^{2}=36
Subtract 5t^{2} from both sides.
256-64t-t^{2}=36
Combine 4t^{2} and -5t^{2} to get -t^{2}.
-64t-t^{2}=36-256
Subtract 256 from both sides.
-64t-t^{2}=-220
Subtract 256 from 36 to get -220.
-t^{2}-64t=-220
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-t^{2}-64t}{-1}=-\frac{220}{-1}
Divide both sides by -1.
t^{2}+\left(-\frac{64}{-1}\right)t=-\frac{220}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}+64t=-\frac{220}{-1}
Divide -64 by -1.
t^{2}+64t=220
Divide -220 by -1.
t^{2}+64t+32^{2}=220+32^{2}
Divide 64, the coefficient of the x term, by 2 to get 32. Then add the square of 32 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+64t+1024=220+1024
Square 32.
t^{2}+64t+1024=1244
Add 220 to 1024.
\left(t+32\right)^{2}=1244
Factor t^{2}+64t+1024. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+32\right)^{2}}=\sqrt{1244}
Take the square root of both sides of the equation.
t+32=2\sqrt{311} t+32=-2\sqrt{311}
Simplify.
t=2\sqrt{311}-32 t=-2\sqrt{311}-32
Subtract 32 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}