Solve for x
x = \frac{5 \sqrt{393} - 85}{2} \approx 7.060569004
x=\frac{-5\sqrt{393}-85}{2}\approx -92.060569004
Graph
Share
Copied to clipboard
-425x+7500-5x^{2}=4250
Use the distributive property to multiply 15-x by 5x+500 and combine like terms.
-425x+7500-5x^{2}-4250=0
Subtract 4250 from both sides.
-425x+3250-5x^{2}=0
Subtract 4250 from 7500 to get 3250.
-5x^{2}-425x+3250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-425\right)±\sqrt{\left(-425\right)^{2}-4\left(-5\right)\times 3250}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -425 for b, and 3250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-425\right)±\sqrt{180625-4\left(-5\right)\times 3250}}{2\left(-5\right)}
Square -425.
x=\frac{-\left(-425\right)±\sqrt{180625+20\times 3250}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-425\right)±\sqrt{180625+65000}}{2\left(-5\right)}
Multiply 20 times 3250.
x=\frac{-\left(-425\right)±\sqrt{245625}}{2\left(-5\right)}
Add 180625 to 65000.
x=\frac{-\left(-425\right)±25\sqrt{393}}{2\left(-5\right)}
Take the square root of 245625.
x=\frac{425±25\sqrt{393}}{2\left(-5\right)}
The opposite of -425 is 425.
x=\frac{425±25\sqrt{393}}{-10}
Multiply 2 times -5.
x=\frac{25\sqrt{393}+425}{-10}
Now solve the equation x=\frac{425±25\sqrt{393}}{-10} when ± is plus. Add 425 to 25\sqrt{393}.
x=\frac{-5\sqrt{393}-85}{2}
Divide 425+25\sqrt{393} by -10.
x=\frac{425-25\sqrt{393}}{-10}
Now solve the equation x=\frac{425±25\sqrt{393}}{-10} when ± is minus. Subtract 25\sqrt{393} from 425.
x=\frac{5\sqrt{393}-85}{2}
Divide 425-25\sqrt{393} by -10.
x=\frac{-5\sqrt{393}-85}{2} x=\frac{5\sqrt{393}-85}{2}
The equation is now solved.
-425x+7500-5x^{2}=4250
Use the distributive property to multiply 15-x by 5x+500 and combine like terms.
-425x-5x^{2}=4250-7500
Subtract 7500 from both sides.
-425x-5x^{2}=-3250
Subtract 7500 from 4250 to get -3250.
-5x^{2}-425x=-3250
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}-425x}{-5}=-\frac{3250}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{425}{-5}\right)x=-\frac{3250}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+85x=-\frac{3250}{-5}
Divide -425 by -5.
x^{2}+85x=650
Divide -3250 by -5.
x^{2}+85x+\left(\frac{85}{2}\right)^{2}=650+\left(\frac{85}{2}\right)^{2}
Divide 85, the coefficient of the x term, by 2 to get \frac{85}{2}. Then add the square of \frac{85}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+85x+\frac{7225}{4}=650+\frac{7225}{4}
Square \frac{85}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+85x+\frac{7225}{4}=\frac{9825}{4}
Add 650 to \frac{7225}{4}.
\left(x+\frac{85}{2}\right)^{2}=\frac{9825}{4}
Factor x^{2}+85x+\frac{7225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{85}{2}\right)^{2}}=\sqrt{\frac{9825}{4}}
Take the square root of both sides of the equation.
x+\frac{85}{2}=\frac{5\sqrt{393}}{2} x+\frac{85}{2}=-\frac{5\sqrt{393}}{2}
Simplify.
x=\frac{5\sqrt{393}-85}{2} x=\frac{-5\sqrt{393}-85}{2}
Subtract \frac{85}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}