Solve for y
y=\frac{\sqrt{145}}{20}+\frac{1}{4}\approx 0.852079729
y=-\frac{\sqrt{145}}{20}+\frac{1}{4}\approx -0.352079729
Graph
Share
Copied to clipboard
15+5y-10y^{2}=12
Use the distributive property to multiply 15-10y by 1+y and combine like terms.
15+5y-10y^{2}-12=0
Subtract 12 from both sides.
3+5y-10y^{2}=0
Subtract 12 from 15 to get 3.
-10y^{2}+5y+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-5±\sqrt{5^{2}-4\left(-10\right)\times 3}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 5 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\left(-10\right)\times 3}}{2\left(-10\right)}
Square 5.
y=\frac{-5±\sqrt{25+40\times 3}}{2\left(-10\right)}
Multiply -4 times -10.
y=\frac{-5±\sqrt{25+120}}{2\left(-10\right)}
Multiply 40 times 3.
y=\frac{-5±\sqrt{145}}{2\left(-10\right)}
Add 25 to 120.
y=\frac{-5±\sqrt{145}}{-20}
Multiply 2 times -10.
y=\frac{\sqrt{145}-5}{-20}
Now solve the equation y=\frac{-5±\sqrt{145}}{-20} when ± is plus. Add -5 to \sqrt{145}.
y=-\frac{\sqrt{145}}{20}+\frac{1}{4}
Divide -5+\sqrt{145} by -20.
y=\frac{-\sqrt{145}-5}{-20}
Now solve the equation y=\frac{-5±\sqrt{145}}{-20} when ± is minus. Subtract \sqrt{145} from -5.
y=\frac{\sqrt{145}}{20}+\frac{1}{4}
Divide -5-\sqrt{145} by -20.
y=-\frac{\sqrt{145}}{20}+\frac{1}{4} y=\frac{\sqrt{145}}{20}+\frac{1}{4}
The equation is now solved.
15+5y-10y^{2}=12
Use the distributive property to multiply 15-10y by 1+y and combine like terms.
5y-10y^{2}=12-15
Subtract 15 from both sides.
5y-10y^{2}=-3
Subtract 15 from 12 to get -3.
-10y^{2}+5y=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10y^{2}+5y}{-10}=-\frac{3}{-10}
Divide both sides by -10.
y^{2}+\frac{5}{-10}y=-\frac{3}{-10}
Dividing by -10 undoes the multiplication by -10.
y^{2}-\frac{1}{2}y=-\frac{3}{-10}
Reduce the fraction \frac{5}{-10} to lowest terms by extracting and canceling out 5.
y^{2}-\frac{1}{2}y=\frac{3}{10}
Divide -3 by -10.
y^{2}-\frac{1}{2}y+\left(-\frac{1}{4}\right)^{2}=\frac{3}{10}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{1}{2}y+\frac{1}{16}=\frac{3}{10}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{1}{2}y+\frac{1}{16}=\frac{29}{80}
Add \frac{3}{10} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{1}{4}\right)^{2}=\frac{29}{80}
Factor y^{2}-\frac{1}{2}y+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{4}\right)^{2}}=\sqrt{\frac{29}{80}}
Take the square root of both sides of the equation.
y-\frac{1}{4}=\frac{\sqrt{145}}{20} y-\frac{1}{4}=-\frac{\sqrt{145}}{20}
Simplify.
y=\frac{\sqrt{145}}{20}+\frac{1}{4} y=-\frac{\sqrt{145}}{20}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}