Evaluate
\frac{123}{8}=15.375
Factor
\frac{3 \cdot 41}{2 ^ {3}} = 15\frac{3}{8} = 15.375
Share
Copied to clipboard
\frac{120+3}{8}-\frac{8\times 3+2}{3}+\frac{47\times 6+5}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Multiply 15 and 8 to get 120.
\frac{123}{8}-\frac{8\times 3+2}{3}+\frac{47\times 6+5}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Add 120 and 3 to get 123.
\frac{123}{8}-\frac{24+2}{3}+\frac{47\times 6+5}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Multiply 8 and 3 to get 24.
\frac{123}{8}-\frac{26}{3}+\frac{47\times 6+5}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Add 24 and 2 to get 26.
\frac{369}{24}-\frac{208}{24}+\frac{47\times 6+5}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Least common multiple of 8 and 3 is 24. Convert \frac{123}{8} and \frac{26}{3} to fractions with denominator 24.
\frac{369-208}{24}+\frac{47\times 6+5}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Since \frac{369}{24} and \frac{208}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{161}{24}+\frac{47\times 6+5}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Subtract 208 from 369 to get 161.
\frac{161}{24}+\frac{282+5}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Multiply 47 and 6 to get 282.
\frac{161}{24}+\frac{287}{6}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Add 282 and 5 to get 287.
\frac{161}{24}+\frac{1148}{24}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Least common multiple of 24 and 6 is 24. Convert \frac{161}{24} and \frac{287}{6} to fractions with denominator 24.
\frac{161+1148}{24}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Since \frac{161}{24} and \frac{1148}{24} have the same denominator, add them by adding their numerators.
\frac{1309}{24}-\frac{32\times 12+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Add 161 and 1148 to get 1309.
\frac{1309}{24}-\frac{384+5}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Multiply 32 and 12 to get 384.
\frac{1309}{24}-\frac{389}{12}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Add 384 and 5 to get 389.
\frac{1309}{24}-\frac{778}{24}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Least common multiple of 24 and 12 is 24. Convert \frac{1309}{24} and \frac{389}{12} to fractions with denominator 24.
\frac{1309-778}{24}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Since \frac{1309}{24} and \frac{778}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{531}{24}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Subtract 778 from 1309 to get 531.
\frac{177}{8}-\left(\frac{12\times 2+1}{2}-\frac{5\times 4+3}{4}\right)
Reduce the fraction \frac{531}{24} to lowest terms by extracting and canceling out 3.
\frac{177}{8}-\left(\frac{24+1}{2}-\frac{5\times 4+3}{4}\right)
Multiply 12 and 2 to get 24.
\frac{177}{8}-\left(\frac{25}{2}-\frac{5\times 4+3}{4}\right)
Add 24 and 1 to get 25.
\frac{177}{8}-\left(\frac{25}{2}-\frac{20+3}{4}\right)
Multiply 5 and 4 to get 20.
\frac{177}{8}-\left(\frac{25}{2}-\frac{23}{4}\right)
Add 20 and 3 to get 23.
\frac{177}{8}-\left(\frac{50}{4}-\frac{23}{4}\right)
Least common multiple of 2 and 4 is 4. Convert \frac{25}{2} and \frac{23}{4} to fractions with denominator 4.
\frac{177}{8}-\frac{50-23}{4}
Since \frac{50}{4} and \frac{23}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{177}{8}-\frac{27}{4}
Subtract 23 from 50 to get 27.
\frac{177}{8}-\frac{54}{8}
Least common multiple of 8 and 4 is 8. Convert \frac{177}{8} and \frac{27}{4} to fractions with denominator 8.
\frac{177-54}{8}
Since \frac{177}{8} and \frac{54}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{123}{8}
Subtract 54 from 177 to get 123.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}