Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(74x^{2}-291x+29178\right)
Factor out 2. Polynomial 74x^{2}-291x+29178 is not factored since it does not have any rational roots.
148x^{2}-582x+58356=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-582\right)±\sqrt{\left(-582\right)^{2}-4\times 148\times 58356}}{2\times 148}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-582\right)±\sqrt{338724-4\times 148\times 58356}}{2\times 148}
Square -582.
x=\frac{-\left(-582\right)±\sqrt{338724-592\times 58356}}{2\times 148}
Multiply -4 times 148.
x=\frac{-\left(-582\right)±\sqrt{338724-34546752}}{2\times 148}
Multiply -592 times 58356.
x=\frac{-\left(-582\right)±\sqrt{-34208028}}{2\times 148}
Add 338724 to -34546752.
148x^{2}-582x+58356
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.