Solve for b
b=6
b=8
Share
Copied to clipboard
196-28b+b^{2}+b^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-b\right)^{2}.
196-28b+2b^{2}=100
Combine b^{2} and b^{2} to get 2b^{2}.
196-28b+2b^{2}-100=0
Subtract 100 from both sides.
96-28b+2b^{2}=0
Subtract 100 from 196 to get 96.
48-14b+b^{2}=0
Divide both sides by 2.
b^{2}-14b+48=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-14 ab=1\times 48=48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as b^{2}+ab+bb+48. To find a and b, set up a system to be solved.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Calculate the sum for each pair.
a=-8 b=-6
The solution is the pair that gives sum -14.
\left(b^{2}-8b\right)+\left(-6b+48\right)
Rewrite b^{2}-14b+48 as \left(b^{2}-8b\right)+\left(-6b+48\right).
b\left(b-8\right)-6\left(b-8\right)
Factor out b in the first and -6 in the second group.
\left(b-8\right)\left(b-6\right)
Factor out common term b-8 by using distributive property.
b=8 b=6
To find equation solutions, solve b-8=0 and b-6=0.
196-28b+b^{2}+b^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-b\right)^{2}.
196-28b+2b^{2}=100
Combine b^{2} and b^{2} to get 2b^{2}.
196-28b+2b^{2}-100=0
Subtract 100 from both sides.
96-28b+2b^{2}=0
Subtract 100 from 196 to get 96.
2b^{2}-28b+96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 96}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -28 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 96}}{2\times 2}
Square -28.
b=\frac{-\left(-28\right)±\sqrt{784-8\times 96}}{2\times 2}
Multiply -4 times 2.
b=\frac{-\left(-28\right)±\sqrt{784-768}}{2\times 2}
Multiply -8 times 96.
b=\frac{-\left(-28\right)±\sqrt{16}}{2\times 2}
Add 784 to -768.
b=\frac{-\left(-28\right)±4}{2\times 2}
Take the square root of 16.
b=\frac{28±4}{2\times 2}
The opposite of -28 is 28.
b=\frac{28±4}{4}
Multiply 2 times 2.
b=\frac{32}{4}
Now solve the equation b=\frac{28±4}{4} when ± is plus. Add 28 to 4.
b=8
Divide 32 by 4.
b=\frac{24}{4}
Now solve the equation b=\frac{28±4}{4} when ± is minus. Subtract 4 from 28.
b=6
Divide 24 by 4.
b=8 b=6
The equation is now solved.
196-28b+b^{2}+b^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(14-b\right)^{2}.
196-28b+2b^{2}=100
Combine b^{2} and b^{2} to get 2b^{2}.
-28b+2b^{2}=100-196
Subtract 196 from both sides.
-28b+2b^{2}=-96
Subtract 196 from 100 to get -96.
2b^{2}-28b=-96
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2b^{2}-28b}{2}=-\frac{96}{2}
Divide both sides by 2.
b^{2}+\left(-\frac{28}{2}\right)b=-\frac{96}{2}
Dividing by 2 undoes the multiplication by 2.
b^{2}-14b=-\frac{96}{2}
Divide -28 by 2.
b^{2}-14b=-48
Divide -96 by 2.
b^{2}-14b+\left(-7\right)^{2}=-48+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-14b+49=-48+49
Square -7.
b^{2}-14b+49=1
Add -48 to 49.
\left(b-7\right)^{2}=1
Factor b^{2}-14b+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-7\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
b-7=1 b-7=-1
Simplify.
b=8 b=6
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}