Solve for y
y=\frac{\sqrt{37554}i}{2}-5\approx -5+96.894272277i
y=-\frac{\sqrt{37554}i}{2}-5\approx -5-96.894272277i
Share
Copied to clipboard
2y^{2}+20y+19321=494
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2y^{2}+20y+19321-494=494-494
Subtract 494 from both sides of the equation.
2y^{2}+20y+19321-494=0
Subtracting 494 from itself leaves 0.
2y^{2}+20y+18827=0
Subtract 494 from 19321.
y=\frac{-20±\sqrt{20^{2}-4\times 2\times 18827}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 20 for b, and 18827 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-20±\sqrt{400-4\times 2\times 18827}}{2\times 2}
Square 20.
y=\frac{-20±\sqrt{400-8\times 18827}}{2\times 2}
Multiply -4 times 2.
y=\frac{-20±\sqrt{400-150616}}{2\times 2}
Multiply -8 times 18827.
y=\frac{-20±\sqrt{-150216}}{2\times 2}
Add 400 to -150616.
y=\frac{-20±2\sqrt{37554}i}{2\times 2}
Take the square root of -150216.
y=\frac{-20±2\sqrt{37554}i}{4}
Multiply 2 times 2.
y=\frac{-20+2\sqrt{37554}i}{4}
Now solve the equation y=\frac{-20±2\sqrt{37554}i}{4} when ± is plus. Add -20 to 2i\sqrt{37554}.
y=\frac{\sqrt{37554}i}{2}-5
Divide -20+2i\sqrt{37554} by 4.
y=\frac{-2\sqrt{37554}i-20}{4}
Now solve the equation y=\frac{-20±2\sqrt{37554}i}{4} when ± is minus. Subtract 2i\sqrt{37554} from -20.
y=-\frac{\sqrt{37554}i}{2}-5
Divide -20-2i\sqrt{37554} by 4.
y=\frac{\sqrt{37554}i}{2}-5 y=-\frac{\sqrt{37554}i}{2}-5
The equation is now solved.
2y^{2}+20y+19321=494
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2y^{2}+20y+19321-19321=494-19321
Subtract 19321 from both sides of the equation.
2y^{2}+20y=494-19321
Subtracting 19321 from itself leaves 0.
2y^{2}+20y=-18827
Subtract 19321 from 494.
\frac{2y^{2}+20y}{2}=-\frac{18827}{2}
Divide both sides by 2.
y^{2}+\frac{20}{2}y=-\frac{18827}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}+10y=-\frac{18827}{2}
Divide 20 by 2.
y^{2}+10y+5^{2}=-\frac{18827}{2}+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+10y+25=-\frac{18827}{2}+25
Square 5.
y^{2}+10y+25=-\frac{18777}{2}
Add -\frac{18827}{2} to 25.
\left(y+5\right)^{2}=-\frac{18777}{2}
Factor y^{2}+10y+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+5\right)^{2}}=\sqrt{-\frac{18777}{2}}
Take the square root of both sides of the equation.
y+5=\frac{\sqrt{37554}i}{2} y+5=-\frac{\sqrt{37554}i}{2}
Simplify.
y=\frac{\sqrt{37554}i}{2}-5 y=-\frac{\sqrt{37554}i}{2}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}