( 13 n ^ { 2 } + 11 n - 2 n ^ { 4 } ) + ( - 13 n ^ { 2 } - 3 n - 6 n ^ { 4 }
Evaluate
8n-8n^{4}
Factor
8n\left(n-1\right)\left(-n^{2}-n-1\right)
Quiz
5 problems similar to:
( 13 n ^ { 2 } + 11 n - 2 n ^ { 4 } ) + ( - 13 n ^ { 2 } - 3 n - 6 n ^ { 4 }
Share
Copied to clipboard
11n-2n^{4}-3n-6n^{4}
Combine 13n^{2} and -13n^{2} to get 0.
8n-2n^{4}-6n^{4}
Combine 11n and -3n to get 8n.
8n-8n^{4}
Combine -2n^{4} and -6n^{4} to get -8n^{4}.
n\left(8-8n^{3}\right)
Factor out n.
-8n^{3}+8
Consider 13n+11-2n^{3}-13n-3-6n^{3}. Multiply and combine like terms.
8\left(-n^{3}+1\right)
Consider -8n^{3}+8. Factor out 8.
\left(n-1\right)\left(-n^{2}-n-1\right)
Consider -n^{3}+1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient -1. One such root is 1. Factor the polynomial by dividing it by n-1.
8n\left(n-1\right)\left(-n^{2}-n-1\right)
Rewrite the complete factored expression. Polynomial -n^{2}-n-1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}