( 13 ( - 11 d ) ) ( 13 ( + 11 d )
Evaluate
-20449d^{2}
Differentiate w.r.t. d
-40898d
Share
Copied to clipboard
13\left(-11\right)d^{2}\times 13\times 11
Multiply d and d to get d^{2}.
-143d^{2}\times 13\times 11
Multiply 13 and -11 to get -143.
-1859d^{2}\times 11
Multiply -143 and 13 to get -1859.
-20449d^{2}
Multiply -1859 and 11 to get -20449.
\frac{\mathrm{d}}{\mathrm{d}d}(13\left(-11\right)d^{2}\times 13\times 11)
Multiply d and d to get d^{2}.
\frac{\mathrm{d}}{\mathrm{d}d}(-143d^{2}\times 13\times 11)
Multiply 13 and -11 to get -143.
\frac{\mathrm{d}}{\mathrm{d}d}(-1859d^{2}\times 11)
Multiply -143 and 13 to get -1859.
\frac{\mathrm{d}}{\mathrm{d}d}(-20449d^{2})
Multiply -1859 and 11 to get -20449.
2\left(-20449\right)d^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-40898d^{2-1}
Multiply 2 times -20449.
-40898d^{1}
Subtract 1 from 2.
-40898d
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}