Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+36x-24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-36±\sqrt{36^{2}-4\times 12\left(-24\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{1296-4\times 12\left(-24\right)}}{2\times 12}
Square 36.
x=\frac{-36±\sqrt{1296-48\left(-24\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-36±\sqrt{1296+1152}}{2\times 12}
Multiply -48 times -24.
x=\frac{-36±\sqrt{2448}}{2\times 12}
Add 1296 to 1152.
x=\frac{-36±12\sqrt{17}}{2\times 12}
Take the square root of 2448.
x=\frac{-36±12\sqrt{17}}{24}
Multiply 2 times 12.
x=\frac{12\sqrt{17}-36}{24}
Now solve the equation x=\frac{-36±12\sqrt{17}}{24} when ± is plus. Add -36 to 12\sqrt{17}.
x=\frac{\sqrt{17}-3}{2}
Divide -36+12\sqrt{17} by 24.
x=\frac{-12\sqrt{17}-36}{24}
Now solve the equation x=\frac{-36±12\sqrt{17}}{24} when ± is minus. Subtract 12\sqrt{17} from -36.
x=\frac{-\sqrt{17}-3}{2}
Divide -36-12\sqrt{17} by 24.
12x^{2}+36x-24=12\left(x-\frac{\sqrt{17}-3}{2}\right)\left(x-\frac{-\sqrt{17}-3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{17}}{2} for x_{1} and \frac{-3-\sqrt{17}}{2} for x_{2}.