Factor
12\left(x-\frac{-\sqrt{17}-3}{2}\right)\left(x-\frac{\sqrt{17}-3}{2}\right)
Evaluate
12\left(x^{2}+3x-2\right)
Graph
Share
Copied to clipboard
12x^{2}+36x-24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-36±\sqrt{36^{2}-4\times 12\left(-24\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{1296-4\times 12\left(-24\right)}}{2\times 12}
Square 36.
x=\frac{-36±\sqrt{1296-48\left(-24\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-36±\sqrt{1296+1152}}{2\times 12}
Multiply -48 times -24.
x=\frac{-36±\sqrt{2448}}{2\times 12}
Add 1296 to 1152.
x=\frac{-36±12\sqrt{17}}{2\times 12}
Take the square root of 2448.
x=\frac{-36±12\sqrt{17}}{24}
Multiply 2 times 12.
x=\frac{12\sqrt{17}-36}{24}
Now solve the equation x=\frac{-36±12\sqrt{17}}{24} when ± is plus. Add -36 to 12\sqrt{17}.
x=\frac{\sqrt{17}-3}{2}
Divide -36+12\sqrt{17} by 24.
x=\frac{-12\sqrt{17}-36}{24}
Now solve the equation x=\frac{-36±12\sqrt{17}}{24} when ± is minus. Subtract 12\sqrt{17} from -36.
x=\frac{-\sqrt{17}-3}{2}
Divide -36-12\sqrt{17} by 24.
12x^{2}+36x-24=12\left(x-\frac{\sqrt{17}-3}{2}\right)\left(x-\frac{-\sqrt{17}-3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{17}}{2} for x_{1} and \frac{-3-\sqrt{17}}{2} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}