Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5000-150x+x^{2}=500\times 88\times \frac{32}{100}
Use the distributive property to multiply 100-x by 50-x and combine like terms.
5000-150x+x^{2}=44000\times \frac{32}{100}
Multiply 500 and 88 to get 44000.
5000-150x+x^{2}=44000\times \frac{8}{25}
Reduce the fraction \frac{32}{100} to lowest terms by extracting and canceling out 4.
5000-150x+x^{2}=14080
Multiply 44000 and \frac{8}{25} to get 14080.
5000-150x+x^{2}-14080=0
Subtract 14080 from both sides.
-9080-150x+x^{2}=0
Subtract 14080 from 5000 to get -9080.
x^{2}-150x-9080=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-150\right)±\sqrt{\left(-150\right)^{2}-4\left(-9080\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -150 for b, and -9080 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-150\right)±\sqrt{22500-4\left(-9080\right)}}{2}
Square -150.
x=\frac{-\left(-150\right)±\sqrt{22500+36320}}{2}
Multiply -4 times -9080.
x=\frac{-\left(-150\right)±\sqrt{58820}}{2}
Add 22500 to 36320.
x=\frac{-\left(-150\right)±2\sqrt{14705}}{2}
Take the square root of 58820.
x=\frac{150±2\sqrt{14705}}{2}
The opposite of -150 is 150.
x=\frac{2\sqrt{14705}+150}{2}
Now solve the equation x=\frac{150±2\sqrt{14705}}{2} when ± is plus. Add 150 to 2\sqrt{14705}.
x=\sqrt{14705}+75
Divide 150+2\sqrt{14705} by 2.
x=\frac{150-2\sqrt{14705}}{2}
Now solve the equation x=\frac{150±2\sqrt{14705}}{2} when ± is minus. Subtract 2\sqrt{14705} from 150.
x=75-\sqrt{14705}
Divide 150-2\sqrt{14705} by 2.
x=\sqrt{14705}+75 x=75-\sqrt{14705}
The equation is now solved.
5000-150x+x^{2}=500\times 88\times \frac{32}{100}
Use the distributive property to multiply 100-x by 50-x and combine like terms.
5000-150x+x^{2}=44000\times \frac{32}{100}
Multiply 500 and 88 to get 44000.
5000-150x+x^{2}=44000\times \frac{8}{25}
Reduce the fraction \frac{32}{100} to lowest terms by extracting and canceling out 4.
5000-150x+x^{2}=14080
Multiply 44000 and \frac{8}{25} to get 14080.
-150x+x^{2}=14080-5000
Subtract 5000 from both sides.
-150x+x^{2}=9080
Subtract 5000 from 14080 to get 9080.
x^{2}-150x=9080
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-150x+\left(-75\right)^{2}=9080+\left(-75\right)^{2}
Divide -150, the coefficient of the x term, by 2 to get -75. Then add the square of -75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-150x+5625=9080+5625
Square -75.
x^{2}-150x+5625=14705
Add 9080 to 5625.
\left(x-75\right)^{2}=14705
Factor x^{2}-150x+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-75\right)^{2}}=\sqrt{14705}
Take the square root of both sides of the equation.
x-75=\sqrt{14705} x-75=-\sqrt{14705}
Simplify.
x=\sqrt{14705}+75 x=75-\sqrt{14705}
Add 75 to both sides of the equation.