Solve for x
x=10\sqrt{19}+50\approx 93.588989435
x=50-10\sqrt{19}\approx 6.411010565
Graph
Share
Copied to clipboard
100x-x^{2}=600
Use the distributive property to multiply 100-x by x.
100x-x^{2}-600=0
Subtract 600 from both sides.
-x^{2}+100x-600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-1\right)\left(-600\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 100 for b, and -600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-1\right)\left(-600\right)}}{2\left(-1\right)}
Square 100.
x=\frac{-100±\sqrt{10000+4\left(-600\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-100±\sqrt{10000-2400}}{2\left(-1\right)}
Multiply 4 times -600.
x=\frac{-100±\sqrt{7600}}{2\left(-1\right)}
Add 10000 to -2400.
x=\frac{-100±20\sqrt{19}}{2\left(-1\right)}
Take the square root of 7600.
x=\frac{-100±20\sqrt{19}}{-2}
Multiply 2 times -1.
x=\frac{20\sqrt{19}-100}{-2}
Now solve the equation x=\frac{-100±20\sqrt{19}}{-2} when ± is plus. Add -100 to 20\sqrt{19}.
x=50-10\sqrt{19}
Divide -100+20\sqrt{19} by -2.
x=\frac{-20\sqrt{19}-100}{-2}
Now solve the equation x=\frac{-100±20\sqrt{19}}{-2} when ± is minus. Subtract 20\sqrt{19} from -100.
x=10\sqrt{19}+50
Divide -100-20\sqrt{19} by -2.
x=50-10\sqrt{19} x=10\sqrt{19}+50
The equation is now solved.
100x-x^{2}=600
Use the distributive property to multiply 100-x by x.
-x^{2}+100x=600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+100x}{-1}=\frac{600}{-1}
Divide both sides by -1.
x^{2}+\frac{100}{-1}x=\frac{600}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-100x=\frac{600}{-1}
Divide 100 by -1.
x^{2}-100x=-600
Divide 600 by -1.
x^{2}-100x+\left(-50\right)^{2}=-600+\left(-50\right)^{2}
Divide -100, the coefficient of the x term, by 2 to get -50. Then add the square of -50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-100x+2500=-600+2500
Square -50.
x^{2}-100x+2500=1900
Add -600 to 2500.
\left(x-50\right)^{2}=1900
Factor x^{2}-100x+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-50\right)^{2}}=\sqrt{1900}
Take the square root of both sides of the equation.
x-50=10\sqrt{19} x-50=-10\sqrt{19}
Simplify.
x=10\sqrt{19}+50 x=50-10\sqrt{19}
Add 50 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}