Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6000-920x+35x^{2}=3600
Use the distributive property to multiply 100-7x by 60-5x and combine like terms.
6000-920x+35x^{2}-3600=0
Subtract 3600 from both sides.
2400-920x+35x^{2}=0
Subtract 3600 from 6000 to get 2400.
35x^{2}-920x+2400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-920\right)±\sqrt{\left(-920\right)^{2}-4\times 35\times 2400}}{2\times 35}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 35 for a, -920 for b, and 2400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-920\right)±\sqrt{846400-4\times 35\times 2400}}{2\times 35}
Square -920.
x=\frac{-\left(-920\right)±\sqrt{846400-140\times 2400}}{2\times 35}
Multiply -4 times 35.
x=\frac{-\left(-920\right)±\sqrt{846400-336000}}{2\times 35}
Multiply -140 times 2400.
x=\frac{-\left(-920\right)±\sqrt{510400}}{2\times 35}
Add 846400 to -336000.
x=\frac{-\left(-920\right)±40\sqrt{319}}{2\times 35}
Take the square root of 510400.
x=\frac{920±40\sqrt{319}}{2\times 35}
The opposite of -920 is 920.
x=\frac{920±40\sqrt{319}}{70}
Multiply 2 times 35.
x=\frac{40\sqrt{319}+920}{70}
Now solve the equation x=\frac{920±40\sqrt{319}}{70} when ± is plus. Add 920 to 40\sqrt{319}.
x=\frac{4\sqrt{319}+92}{7}
Divide 920+40\sqrt{319} by 70.
x=\frac{920-40\sqrt{319}}{70}
Now solve the equation x=\frac{920±40\sqrt{319}}{70} when ± is minus. Subtract 40\sqrt{319} from 920.
x=\frac{92-4\sqrt{319}}{7}
Divide 920-40\sqrt{319} by 70.
x=\frac{4\sqrt{319}+92}{7} x=\frac{92-4\sqrt{319}}{7}
The equation is now solved.
6000-920x+35x^{2}=3600
Use the distributive property to multiply 100-7x by 60-5x and combine like terms.
-920x+35x^{2}=3600-6000
Subtract 6000 from both sides.
-920x+35x^{2}=-2400
Subtract 6000 from 3600 to get -2400.
35x^{2}-920x=-2400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{35x^{2}-920x}{35}=-\frac{2400}{35}
Divide both sides by 35.
x^{2}+\left(-\frac{920}{35}\right)x=-\frac{2400}{35}
Dividing by 35 undoes the multiplication by 35.
x^{2}-\frac{184}{7}x=-\frac{2400}{35}
Reduce the fraction \frac{-920}{35} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{184}{7}x=-\frac{480}{7}
Reduce the fraction \frac{-2400}{35} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{184}{7}x+\left(-\frac{92}{7}\right)^{2}=-\frac{480}{7}+\left(-\frac{92}{7}\right)^{2}
Divide -\frac{184}{7}, the coefficient of the x term, by 2 to get -\frac{92}{7}. Then add the square of -\frac{92}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{184}{7}x+\frac{8464}{49}=-\frac{480}{7}+\frac{8464}{49}
Square -\frac{92}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{184}{7}x+\frac{8464}{49}=\frac{5104}{49}
Add -\frac{480}{7} to \frac{8464}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{92}{7}\right)^{2}=\frac{5104}{49}
Factor x^{2}-\frac{184}{7}x+\frac{8464}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{92}{7}\right)^{2}}=\sqrt{\frac{5104}{49}}
Take the square root of both sides of the equation.
x-\frac{92}{7}=\frac{4\sqrt{319}}{7} x-\frac{92}{7}=-\frac{4\sqrt{319}}{7}
Simplify.
x=\frac{4\sqrt{319}+92}{7} x=\frac{92-4\sqrt{319}}{7}
Add \frac{92}{7} to both sides of the equation.