Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5000-300x+4x^{2}=3600
Use the distributive property to multiply 100-2x by 50-2x and combine like terms.
5000-300x+4x^{2}-3600=0
Subtract 3600 from both sides.
1400-300x+4x^{2}=0
Subtract 3600 from 5000 to get 1400.
4x^{2}-300x+1400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\times 4\times 1400}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -300 for b, and 1400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-300\right)±\sqrt{90000-4\times 4\times 1400}}{2\times 4}
Square -300.
x=\frac{-\left(-300\right)±\sqrt{90000-16\times 1400}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-300\right)±\sqrt{90000-22400}}{2\times 4}
Multiply -16 times 1400.
x=\frac{-\left(-300\right)±\sqrt{67600}}{2\times 4}
Add 90000 to -22400.
x=\frac{-\left(-300\right)±260}{2\times 4}
Take the square root of 67600.
x=\frac{300±260}{2\times 4}
The opposite of -300 is 300.
x=\frac{300±260}{8}
Multiply 2 times 4.
x=\frac{560}{8}
Now solve the equation x=\frac{300±260}{8} when ± is plus. Add 300 to 260.
x=70
Divide 560 by 8.
x=\frac{40}{8}
Now solve the equation x=\frac{300±260}{8} when ± is minus. Subtract 260 from 300.
x=5
Divide 40 by 8.
x=70 x=5
The equation is now solved.
5000-300x+4x^{2}=3600
Use the distributive property to multiply 100-2x by 50-2x and combine like terms.
-300x+4x^{2}=3600-5000
Subtract 5000 from both sides.
-300x+4x^{2}=-1400
Subtract 5000 from 3600 to get -1400.
4x^{2}-300x=-1400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-300x}{4}=-\frac{1400}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{300}{4}\right)x=-\frac{1400}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-75x=-\frac{1400}{4}
Divide -300 by 4.
x^{2}-75x=-350
Divide -1400 by 4.
x^{2}-75x+\left(-\frac{75}{2}\right)^{2}=-350+\left(-\frac{75}{2}\right)^{2}
Divide -75, the coefficient of the x term, by 2 to get -\frac{75}{2}. Then add the square of -\frac{75}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-75x+\frac{5625}{4}=-350+\frac{5625}{4}
Square -\frac{75}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-75x+\frac{5625}{4}=\frac{4225}{4}
Add -350 to \frac{5625}{4}.
\left(x-\frac{75}{2}\right)^{2}=\frac{4225}{4}
Factor x^{2}-75x+\frac{5625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{75}{2}\right)^{2}}=\sqrt{\frac{4225}{4}}
Take the square root of both sides of the equation.
x-\frac{75}{2}=\frac{65}{2} x-\frac{75}{2}=-\frac{65}{2}
Simplify.
x=70 x=5
Add \frac{75}{2} to both sides of the equation.