Solve for x
x=\sqrt{1001}+25\approx 56.638584039
x=25-\sqrt{1001}\approx -6.638584039
Graph
Share
Copied to clipboard
6000+500x-10x^{2}=2240
Use the distributive property to multiply 100+10x by 60-x and combine like terms.
6000+500x-10x^{2}-2240=0
Subtract 2240 from both sides.
3760+500x-10x^{2}=0
Subtract 2240 from 6000 to get 3760.
-10x^{2}+500x+3760=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-500±\sqrt{500^{2}-4\left(-10\right)\times 3760}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 500 for b, and 3760 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-500±\sqrt{250000-4\left(-10\right)\times 3760}}{2\left(-10\right)}
Square 500.
x=\frac{-500±\sqrt{250000+40\times 3760}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-500±\sqrt{250000+150400}}{2\left(-10\right)}
Multiply 40 times 3760.
x=\frac{-500±\sqrt{400400}}{2\left(-10\right)}
Add 250000 to 150400.
x=\frac{-500±20\sqrt{1001}}{2\left(-10\right)}
Take the square root of 400400.
x=\frac{-500±20\sqrt{1001}}{-20}
Multiply 2 times -10.
x=\frac{20\sqrt{1001}-500}{-20}
Now solve the equation x=\frac{-500±20\sqrt{1001}}{-20} when ± is plus. Add -500 to 20\sqrt{1001}.
x=25-\sqrt{1001}
Divide -500+20\sqrt{1001} by -20.
x=\frac{-20\sqrt{1001}-500}{-20}
Now solve the equation x=\frac{-500±20\sqrt{1001}}{-20} when ± is minus. Subtract 20\sqrt{1001} from -500.
x=\sqrt{1001}+25
Divide -500-20\sqrt{1001} by -20.
x=25-\sqrt{1001} x=\sqrt{1001}+25
The equation is now solved.
6000+500x-10x^{2}=2240
Use the distributive property to multiply 100+10x by 60-x and combine like terms.
500x-10x^{2}=2240-6000
Subtract 6000 from both sides.
500x-10x^{2}=-3760
Subtract 6000 from 2240 to get -3760.
-10x^{2}+500x=-3760
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+500x}{-10}=-\frac{3760}{-10}
Divide both sides by -10.
x^{2}+\frac{500}{-10}x=-\frac{3760}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-50x=-\frac{3760}{-10}
Divide 500 by -10.
x^{2}-50x=376
Divide -3760 by -10.
x^{2}-50x+\left(-25\right)^{2}=376+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-50x+625=376+625
Square -25.
x^{2}-50x+625=1001
Add 376 to 625.
\left(x-25\right)^{2}=1001
Factor x^{2}-50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{1001}
Take the square root of both sides of the equation.
x-25=\sqrt{1001} x-25=-\sqrt{1001}
Simplify.
x=\sqrt{1001}+25 x=25-\sqrt{1001}
Add 25 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}