Solve for b
b=1
b=0
Share
Copied to clipboard
100+50b-6b^{2}=\left(10+2b\right)^{2}
Use the distributive property to multiply 10-b by 10+6b and combine like terms.
100+50b-6b^{2}=100+40b+4b^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+2b\right)^{2}.
100+50b-6b^{2}-100=40b+4b^{2}
Subtract 100 from both sides.
50b-6b^{2}=40b+4b^{2}
Subtract 100 from 100 to get 0.
50b-6b^{2}-40b=4b^{2}
Subtract 40b from both sides.
10b-6b^{2}=4b^{2}
Combine 50b and -40b to get 10b.
10b-6b^{2}-4b^{2}=0
Subtract 4b^{2} from both sides.
10b-10b^{2}=0
Combine -6b^{2} and -4b^{2} to get -10b^{2}.
b\left(10-10b\right)=0
Factor out b.
b=0 b=1
To find equation solutions, solve b=0 and 10-10b=0.
100+50b-6b^{2}=\left(10+2b\right)^{2}
Use the distributive property to multiply 10-b by 10+6b and combine like terms.
100+50b-6b^{2}=100+40b+4b^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+2b\right)^{2}.
100+50b-6b^{2}-100=40b+4b^{2}
Subtract 100 from both sides.
50b-6b^{2}=40b+4b^{2}
Subtract 100 from 100 to get 0.
50b-6b^{2}-40b=4b^{2}
Subtract 40b from both sides.
10b-6b^{2}=4b^{2}
Combine 50b and -40b to get 10b.
10b-6b^{2}-4b^{2}=0
Subtract 4b^{2} from both sides.
10b-10b^{2}=0
Combine -6b^{2} and -4b^{2} to get -10b^{2}.
-10b^{2}+10b=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-10±\sqrt{10^{2}}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 10 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-10±10}{2\left(-10\right)}
Take the square root of 10^{2}.
b=\frac{-10±10}{-20}
Multiply 2 times -10.
b=\frac{0}{-20}
Now solve the equation b=\frac{-10±10}{-20} when ± is plus. Add -10 to 10.
b=0
Divide 0 by -20.
b=-\frac{20}{-20}
Now solve the equation b=\frac{-10±10}{-20} when ± is minus. Subtract 10 from -10.
b=1
Divide -20 by -20.
b=0 b=1
The equation is now solved.
100+50b-6b^{2}=\left(10+2b\right)^{2}
Use the distributive property to multiply 10-b by 10+6b and combine like terms.
100+50b-6b^{2}=100+40b+4b^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+2b\right)^{2}.
100+50b-6b^{2}-40b=100+4b^{2}
Subtract 40b from both sides.
100+10b-6b^{2}=100+4b^{2}
Combine 50b and -40b to get 10b.
100+10b-6b^{2}-4b^{2}=100
Subtract 4b^{2} from both sides.
100+10b-10b^{2}=100
Combine -6b^{2} and -4b^{2} to get -10b^{2}.
10b-10b^{2}=100-100
Subtract 100 from both sides.
10b-10b^{2}=0
Subtract 100 from 100 to get 0.
-10b^{2}+10b=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10b^{2}+10b}{-10}=\frac{0}{-10}
Divide both sides by -10.
b^{2}+\frac{10}{-10}b=\frac{0}{-10}
Dividing by -10 undoes the multiplication by -10.
b^{2}-b=\frac{0}{-10}
Divide 10 by -10.
b^{2}-b=0
Divide 0 by -10.
b^{2}-b+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-b+\frac{1}{4}=\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(b-\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor b^{2}-b+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
b-\frac{1}{2}=\frac{1}{2} b-\frac{1}{2}=-\frac{1}{2}
Simplify.
b=1 b=0
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}