Solve for M
M=-\frac{2\left(39-5m\right)}{m-9}
m\neq 9
Solve for m
m=-\frac{3\left(26-3M\right)}{M-10}
M\neq 10
Share
Copied to clipboard
90-10m-9M+Mm=12
Use the distributive property to multiply 10-M by 9-m.
-10m-9M+Mm=12-90
Subtract 90 from both sides.
-10m-9M+Mm=-78
Subtract 90 from 12 to get -78.
-9M+Mm=-78+10m
Add 10m to both sides.
\left(-9+m\right)M=-78+10m
Combine all terms containing M.
\left(m-9\right)M=10m-78
The equation is in standard form.
\frac{\left(m-9\right)M}{m-9}=\frac{10m-78}{m-9}
Divide both sides by m-9.
M=\frac{10m-78}{m-9}
Dividing by m-9 undoes the multiplication by m-9.
M=\frac{2\left(5m-39\right)}{m-9}
Divide -78+10m by m-9.
90-10m-9M+Mm=12
Use the distributive property to multiply 10-M by 9-m.
-10m-9M+Mm=12-90
Subtract 90 from both sides.
-10m-9M+Mm=-78
Subtract 90 from 12 to get -78.
-10m+Mm=-78+9M
Add 9M to both sides.
\left(-10+M\right)m=-78+9M
Combine all terms containing m.
\left(M-10\right)m=9M-78
The equation is in standard form.
\frac{\left(M-10\right)m}{M-10}=\frac{9M-78}{M-10}
Divide both sides by M-10.
m=\frac{9M-78}{M-10}
Dividing by M-10 undoes the multiplication by M-10.
m=\frac{3\left(3M-26\right)}{M-10}
Divide -78+9M by M-10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}