Solve for A
A=10-\frac{40}{x}
x\neq 0
Solve for x
x=\frac{40}{10-A}
A\neq 10
Graph
Share
Copied to clipboard
10x-Ax=40
Use the distributive property to multiply 10-A by x.
-Ax=40-10x
Subtract 10x from both sides.
\left(-x\right)A=40-10x
The equation is in standard form.
\frac{\left(-x\right)A}{-x}=\frac{40-10x}{-x}
Divide both sides by -x.
A=\frac{40-10x}{-x}
Dividing by -x undoes the multiplication by -x.
A=10-\frac{40}{x}
Divide 40-10x by -x.
10x-Ax=40
Use the distributive property to multiply 10-A by x.
\left(10-A\right)x=40
Combine all terms containing x.
\frac{\left(10-A\right)x}{10-A}=\frac{40}{10-A}
Divide both sides by 10-A.
x=\frac{40}{10-A}
Dividing by 10-A undoes the multiplication by 10-A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}