Solve for y
y=-\frac{5x\left(2-x\right)}{1-5x}
x\neq \frac{1}{5}
Solve for x
x=-\frac{\sqrt{25y^{2}-80y+100}}{10}-\frac{y}{2}+1
x=\frac{\sqrt{25y^{2}-80y+100}}{10}-\frac{y}{2}+1
Graph
Share
Copied to clipboard
10x+y=5x^{2}+5xy
Use the distributive property to multiply 5x by x+y.
10x+y-5xy=5x^{2}
Subtract 5xy from both sides.
y-5xy=5x^{2}-10x
Subtract 10x from both sides.
\left(1-5x\right)y=5x^{2}-10x
Combine all terms containing y.
\frac{\left(1-5x\right)y}{1-5x}=\frac{5x\left(x-2\right)}{1-5x}
Divide both sides by 1-5x.
y=\frac{5x\left(x-2\right)}{1-5x}
Dividing by 1-5x undoes the multiplication by 1-5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}