Evaluate
\frac{85x}{3}-105y-\frac{16}{3}
Expand
\frac{85x}{3}-105y-\frac{16}{3}
Quiz
Algebra
5 problems similar to:
( 10 ) \frac { 7 } { 6 } ( 3 x - 9 y ) - \frac { 4 } { 3 } ( 4 + 5 x )
Share
Copied to clipboard
\frac{10\times 7}{6}\left(3x-9y\right)-\frac{4}{3}\left(4+5x\right)
Express 10\times \frac{7}{6} as a single fraction.
\frac{70}{6}\left(3x-9y\right)-\frac{4}{3}\left(4+5x\right)
Multiply 10 and 7 to get 70.
\frac{35}{3}\left(3x-9y\right)-\frac{4}{3}\left(4+5x\right)
Reduce the fraction \frac{70}{6} to lowest terms by extracting and canceling out 2.
\frac{35}{3}\times 3x+\frac{35}{3}\left(-9\right)y-\frac{4}{3}\left(4+5x\right)
Use the distributive property to multiply \frac{35}{3} by 3x-9y.
35x+\frac{35}{3}\left(-9\right)y-\frac{4}{3}\left(4+5x\right)
Cancel out 3 and 3.
35x+\frac{35\left(-9\right)}{3}y-\frac{4}{3}\left(4+5x\right)
Express \frac{35}{3}\left(-9\right) as a single fraction.
35x+\frac{-315}{3}y-\frac{4}{3}\left(4+5x\right)
Multiply 35 and -9 to get -315.
35x-105y-\frac{4}{3}\left(4+5x\right)
Divide -315 by 3 to get -105.
35x-105y-\frac{4}{3}\times 4-\frac{4}{3}\times 5x
Use the distributive property to multiply -\frac{4}{3} by 4+5x.
35x-105y+\frac{-4\times 4}{3}-\frac{4}{3}\times 5x
Express -\frac{4}{3}\times 4 as a single fraction.
35x-105y+\frac{-16}{3}-\frac{4}{3}\times 5x
Multiply -4 and 4 to get -16.
35x-105y-\frac{16}{3}-\frac{4}{3}\times 5x
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
35x-105y-\frac{16}{3}+\frac{-4\times 5}{3}x
Express -\frac{4}{3}\times 5 as a single fraction.
35x-105y-\frac{16}{3}+\frac{-20}{3}x
Multiply -4 and 5 to get -20.
35x-105y-\frac{16}{3}-\frac{20}{3}x
Fraction \frac{-20}{3} can be rewritten as -\frac{20}{3} by extracting the negative sign.
\frac{85}{3}x-105y-\frac{16}{3}
Combine 35x and -\frac{20}{3}x to get \frac{85}{3}x.
\frac{10\times 7}{6}\left(3x-9y\right)-\frac{4}{3}\left(4+5x\right)
Express 10\times \frac{7}{6} as a single fraction.
\frac{70}{6}\left(3x-9y\right)-\frac{4}{3}\left(4+5x\right)
Multiply 10 and 7 to get 70.
\frac{35}{3}\left(3x-9y\right)-\frac{4}{3}\left(4+5x\right)
Reduce the fraction \frac{70}{6} to lowest terms by extracting and canceling out 2.
\frac{35}{3}\times 3x+\frac{35}{3}\left(-9\right)y-\frac{4}{3}\left(4+5x\right)
Use the distributive property to multiply \frac{35}{3} by 3x-9y.
35x+\frac{35}{3}\left(-9\right)y-\frac{4}{3}\left(4+5x\right)
Cancel out 3 and 3.
35x+\frac{35\left(-9\right)}{3}y-\frac{4}{3}\left(4+5x\right)
Express \frac{35}{3}\left(-9\right) as a single fraction.
35x+\frac{-315}{3}y-\frac{4}{3}\left(4+5x\right)
Multiply 35 and -9 to get -315.
35x-105y-\frac{4}{3}\left(4+5x\right)
Divide -315 by 3 to get -105.
35x-105y-\frac{4}{3}\times 4-\frac{4}{3}\times 5x
Use the distributive property to multiply -\frac{4}{3} by 4+5x.
35x-105y+\frac{-4\times 4}{3}-\frac{4}{3}\times 5x
Express -\frac{4}{3}\times 4 as a single fraction.
35x-105y+\frac{-16}{3}-\frac{4}{3}\times 5x
Multiply -4 and 4 to get -16.
35x-105y-\frac{16}{3}-\frac{4}{3}\times 5x
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
35x-105y-\frac{16}{3}+\frac{-4\times 5}{3}x
Express -\frac{4}{3}\times 5 as a single fraction.
35x-105y-\frac{16}{3}+\frac{-20}{3}x
Multiply -4 and 5 to get -20.
35x-105y-\frac{16}{3}-\frac{20}{3}x
Fraction \frac{-20}{3} can be rewritten as -\frac{20}{3} by extracting the negative sign.
\frac{85}{3}x-105y-\frac{16}{3}
Combine 35x and -\frac{20}{3}x to get \frac{85}{3}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}