( 10 / 7 \cdot 5 - ( 1 / 2 + 3 / 14 ) : 1 / 5 ] : ( 2 + 1 / 2 ) - 2 / 3 - 1 / 7
Evaluate
\frac{13}{21}\approx 0.619047619
Factor
\frac{13}{3 \cdot 7} = 0.6190476190476191
Share
Copied to clipboard
\frac{\frac{10\times 5}{7}-\frac{\frac{1}{2}+\frac{3}{14}}{\frac{1}{5}}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Express \frac{10}{7}\times 5 as a single fraction.
\frac{\frac{50}{7}-\frac{\frac{1}{2}+\frac{3}{14}}{\frac{1}{5}}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Multiply 10 and 5 to get 50.
\frac{\frac{50}{7}-\frac{\frac{7}{14}+\frac{3}{14}}{\frac{1}{5}}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Least common multiple of 2 and 14 is 14. Convert \frac{1}{2} and \frac{3}{14} to fractions with denominator 14.
\frac{\frac{50}{7}-\frac{\frac{7+3}{14}}{\frac{1}{5}}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Since \frac{7}{14} and \frac{3}{14} have the same denominator, add them by adding their numerators.
\frac{\frac{50}{7}-\frac{\frac{10}{14}}{\frac{1}{5}}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Add 7 and 3 to get 10.
\frac{\frac{50}{7}-\frac{\frac{5}{7}}{\frac{1}{5}}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Reduce the fraction \frac{10}{14} to lowest terms by extracting and canceling out 2.
\frac{\frac{50}{7}-\frac{5}{7}\times 5}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Divide \frac{5}{7} by \frac{1}{5} by multiplying \frac{5}{7} by the reciprocal of \frac{1}{5}.
\frac{\frac{50}{7}-\frac{5\times 5}{7}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Express \frac{5}{7}\times 5 as a single fraction.
\frac{\frac{50}{7}-\frac{25}{7}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Multiply 5 and 5 to get 25.
\frac{\frac{50-25}{7}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Since \frac{50}{7} and \frac{25}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{25}{7}}{2+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Subtract 25 from 50 to get 25.
\frac{\frac{25}{7}}{\frac{4}{2}+\frac{1}{2}}-\frac{2}{3}-\frac{1}{7}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{25}{7}}{\frac{4+1}{2}}-\frac{2}{3}-\frac{1}{7}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{25}{7}}{\frac{5}{2}}-\frac{2}{3}-\frac{1}{7}
Add 4 and 1 to get 5.
\frac{25}{7}\times \frac{2}{5}-\frac{2}{3}-\frac{1}{7}
Divide \frac{25}{7} by \frac{5}{2} by multiplying \frac{25}{7} by the reciprocal of \frac{5}{2}.
\frac{25\times 2}{7\times 5}-\frac{2}{3}-\frac{1}{7}
Multiply \frac{25}{7} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{50}{35}-\frac{2}{3}-\frac{1}{7}
Do the multiplications in the fraction \frac{25\times 2}{7\times 5}.
\frac{10}{7}-\frac{2}{3}-\frac{1}{7}
Reduce the fraction \frac{50}{35} to lowest terms by extracting and canceling out 5.
\frac{30}{21}-\frac{14}{21}-\frac{1}{7}
Least common multiple of 7 and 3 is 21. Convert \frac{10}{7} and \frac{2}{3} to fractions with denominator 21.
\frac{30-14}{21}-\frac{1}{7}
Since \frac{30}{21} and \frac{14}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{16}{21}-\frac{1}{7}
Subtract 14 from 30 to get 16.
\frac{16}{21}-\frac{3}{21}
Least common multiple of 21 and 7 is 21. Convert \frac{16}{21} and \frac{1}{7} to fractions with denominator 21.
\frac{16-3}{21}
Since \frac{16}{21} and \frac{3}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{21}
Subtract 3 from 16 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}