Solve for x
x=30\sqrt{151}+360\approx 728.646171823
x=360-30\sqrt{151}\approx -8.646171823
Graph
Share
Copied to clipboard
7300+720x-x^{2}=1000
Use the distributive property to multiply 10+x by 730-x and combine like terms.
7300+720x-x^{2}-1000=0
Subtract 1000 from both sides.
6300+720x-x^{2}=0
Subtract 1000 from 7300 to get 6300.
-x^{2}+720x+6300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-720±\sqrt{720^{2}-4\left(-1\right)\times 6300}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 720 for b, and 6300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-720±\sqrt{518400-4\left(-1\right)\times 6300}}{2\left(-1\right)}
Square 720.
x=\frac{-720±\sqrt{518400+4\times 6300}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-720±\sqrt{518400+25200}}{2\left(-1\right)}
Multiply 4 times 6300.
x=\frac{-720±\sqrt{543600}}{2\left(-1\right)}
Add 518400 to 25200.
x=\frac{-720±60\sqrt{151}}{2\left(-1\right)}
Take the square root of 543600.
x=\frac{-720±60\sqrt{151}}{-2}
Multiply 2 times -1.
x=\frac{60\sqrt{151}-720}{-2}
Now solve the equation x=\frac{-720±60\sqrt{151}}{-2} when ± is plus. Add -720 to 60\sqrt{151}.
x=360-30\sqrt{151}
Divide -720+60\sqrt{151} by -2.
x=\frac{-60\sqrt{151}-720}{-2}
Now solve the equation x=\frac{-720±60\sqrt{151}}{-2} when ± is minus. Subtract 60\sqrt{151} from -720.
x=30\sqrt{151}+360
Divide -720-60\sqrt{151} by -2.
x=360-30\sqrt{151} x=30\sqrt{151}+360
The equation is now solved.
7300+720x-x^{2}=1000
Use the distributive property to multiply 10+x by 730-x and combine like terms.
720x-x^{2}=1000-7300
Subtract 7300 from both sides.
720x-x^{2}=-6300
Subtract 7300 from 1000 to get -6300.
-x^{2}+720x=-6300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+720x}{-1}=-\frac{6300}{-1}
Divide both sides by -1.
x^{2}+\frac{720}{-1}x=-\frac{6300}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-720x=-\frac{6300}{-1}
Divide 720 by -1.
x^{2}-720x=6300
Divide -6300 by -1.
x^{2}-720x+\left(-360\right)^{2}=6300+\left(-360\right)^{2}
Divide -720, the coefficient of the x term, by 2 to get -360. Then add the square of -360 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-720x+129600=6300+129600
Square -360.
x^{2}-720x+129600=135900
Add 6300 to 129600.
\left(x-360\right)^{2}=135900
Factor x^{2}-720x+129600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-360\right)^{2}}=\sqrt{135900}
Take the square root of both sides of the equation.
x-360=30\sqrt{151} x-360=-30\sqrt{151}
Simplify.
x=30\sqrt{151}+360 x=360-30\sqrt{151}
Add 360 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}