Solve for d
d=-15
d=0
Share
Copied to clipboard
100+40d+4d^{2}=\frac{10+d}{\frac{1}{10+6d}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+2d\right)^{2}.
100+40d+4d^{2}=\left(10+d\right)\left(10+6d\right)
Variable d cannot be equal to -\frac{5}{3} since division by zero is not defined. Divide 10+d by \frac{1}{10+6d} by multiplying 10+d by the reciprocal of \frac{1}{10+6d}.
100+40d+4d^{2}=100+70d+6d^{2}
Use the distributive property to multiply 10+d by 10+6d and combine like terms.
100+40d+4d^{2}-100=70d+6d^{2}
Subtract 100 from both sides.
40d+4d^{2}=70d+6d^{2}
Subtract 100 from 100 to get 0.
40d+4d^{2}-70d=6d^{2}
Subtract 70d from both sides.
-30d+4d^{2}=6d^{2}
Combine 40d and -70d to get -30d.
-30d+4d^{2}-6d^{2}=0
Subtract 6d^{2} from both sides.
-30d-2d^{2}=0
Combine 4d^{2} and -6d^{2} to get -2d^{2}.
d\left(-30-2d\right)=0
Factor out d.
d=0 d=-15
To find equation solutions, solve d=0 and -30-2d=0.
100+40d+4d^{2}=\frac{10+d}{\frac{1}{10+6d}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+2d\right)^{2}.
100+40d+4d^{2}=\left(10+d\right)\left(10+6d\right)
Variable d cannot be equal to -\frac{5}{3} since division by zero is not defined. Divide 10+d by \frac{1}{10+6d} by multiplying 10+d by the reciprocal of \frac{1}{10+6d}.
100+40d+4d^{2}=100+70d+6d^{2}
Use the distributive property to multiply 10+d by 10+6d and combine like terms.
100+40d+4d^{2}-100=70d+6d^{2}
Subtract 100 from both sides.
40d+4d^{2}=70d+6d^{2}
Subtract 100 from 100 to get 0.
40d+4d^{2}-70d=6d^{2}
Subtract 70d from both sides.
-30d+4d^{2}=6d^{2}
Combine 40d and -70d to get -30d.
-30d+4d^{2}-6d^{2}=0
Subtract 6d^{2} from both sides.
-30d-2d^{2}=0
Combine 4d^{2} and -6d^{2} to get -2d^{2}.
-2d^{2}-30d=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -30 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-30\right)±30}{2\left(-2\right)}
Take the square root of \left(-30\right)^{2}.
d=\frac{30±30}{2\left(-2\right)}
The opposite of -30 is 30.
d=\frac{30±30}{-4}
Multiply 2 times -2.
d=\frac{60}{-4}
Now solve the equation d=\frac{30±30}{-4} when ± is plus. Add 30 to 30.
d=-15
Divide 60 by -4.
d=\frac{0}{-4}
Now solve the equation d=\frac{30±30}{-4} when ± is minus. Subtract 30 from 30.
d=0
Divide 0 by -4.
d=-15 d=0
The equation is now solved.
100+40d+4d^{2}=\frac{10+d}{\frac{1}{10+6d}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+2d\right)^{2}.
100+40d+4d^{2}=\left(10+d\right)\left(10+6d\right)
Variable d cannot be equal to -\frac{5}{3} since division by zero is not defined. Divide 10+d by \frac{1}{10+6d} by multiplying 10+d by the reciprocal of \frac{1}{10+6d}.
100+40d+4d^{2}=100+70d+6d^{2}
Use the distributive property to multiply 10+d by 10+6d and combine like terms.
100+40d+4d^{2}-70d=100+6d^{2}
Subtract 70d from both sides.
100-30d+4d^{2}=100+6d^{2}
Combine 40d and -70d to get -30d.
100-30d+4d^{2}-6d^{2}=100
Subtract 6d^{2} from both sides.
100-30d-2d^{2}=100
Combine 4d^{2} and -6d^{2} to get -2d^{2}.
-30d-2d^{2}=100-100
Subtract 100 from both sides.
-30d-2d^{2}=0
Subtract 100 from 100 to get 0.
-2d^{2}-30d=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2d^{2}-30d}{-2}=\frac{0}{-2}
Divide both sides by -2.
d^{2}+\left(-\frac{30}{-2}\right)d=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
d^{2}+15d=\frac{0}{-2}
Divide -30 by -2.
d^{2}+15d=0
Divide 0 by -2.
d^{2}+15d+\left(\frac{15}{2}\right)^{2}=\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+15d+\frac{225}{4}=\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
\left(d+\frac{15}{2}\right)^{2}=\frac{225}{4}
Factor d^{2}+15d+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{15}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
d+\frac{15}{2}=\frac{15}{2} d+\frac{15}{2}=-\frac{15}{2}
Simplify.
d=0 d=-15
Subtract \frac{15}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}