Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1.44-x^{2}=1.08
Consider \left(1.2+x\right)\left(1.2-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.2.
-x^{2}=1.08-1.44
Subtract 1.44 from both sides.
-x^{2}=-0.36
Subtract 1.44 from 1.08 to get -0.36.
x^{2}=\frac{-0.36}{-1}
Divide both sides by -1.
x^{2}=\frac{-36}{-100}
Expand \frac{-0.36}{-1} by multiplying both numerator and the denominator by 100.
x^{2}=\frac{9}{25}
Reduce the fraction \frac{-36}{-100} to lowest terms by extracting and canceling out -4.
x=\frac{3}{5} x=-\frac{3}{5}
Take the square root of both sides of the equation.
1.44-x^{2}=1.08
Consider \left(1.2+x\right)\left(1.2-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.2.
1.44-x^{2}-1.08=0
Subtract 1.08 from both sides.
0.36-x^{2}=0
Subtract 1.08 from 1.44 to get 0.36.
-x^{2}+\frac{9}{25}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times \frac{9}{25}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and \frac{9}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times \frac{9}{25}}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\times \frac{9}{25}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{\frac{36}{25}}}{2\left(-1\right)}
Multiply 4 times \frac{9}{25}.
x=\frac{0±\frac{6}{5}}{2\left(-1\right)}
Take the square root of \frac{36}{25}.
x=\frac{0±\frac{6}{5}}{-2}
Multiply 2 times -1.
x=-\frac{3}{5}
Now solve the equation x=\frac{0±\frac{6}{5}}{-2} when ± is plus.
x=\frac{3}{5}
Now solve the equation x=\frac{0±\frac{6}{5}}{-2} when ± is minus.
x=-\frac{3}{5} x=\frac{3}{5}
The equation is now solved.