( 1,5 ) ^ { 3 } = \frac { ( 3,9 ) ^ { 3 } } { x ^ { 2 } }
Solve for x
x = \frac{13 \sqrt{65}}{25} \approx 4.192374029
x = -\frac{13 \sqrt{65}}{25} \approx -4.192374029
Graph
Share
Copied to clipboard
x^{2}\times 1,5^{3}=3,9^{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
x^{2}\times 3,375=3,9^{3}
Calculate 1,5 to the power of 3 and get 3,375.
x^{2}\times 3,375=59,319
Calculate 3,9 to the power of 3 and get 59,319.
x^{2}=\frac{59,319}{3,375}
Divide both sides by 3,375.
x^{2}=\frac{59319}{3375}
Expand \frac{59,319}{3,375} by multiplying both numerator and the denominator by 1000.
x^{2}=\frac{2197}{125}
Reduce the fraction \frac{59319}{3375} to lowest terms by extracting and canceling out 27.
x=\frac{13\sqrt{65}}{25} x=-\frac{13\sqrt{65}}{25}
Take the square root of both sides of the equation.
x^{2}\times 1,5^{3}=3,9^{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
x^{2}\times 3,375=3,9^{3}
Calculate 1,5 to the power of 3 and get 3,375.
x^{2}\times 3,375=59,319
Calculate 3,9 to the power of 3 and get 59,319.
x^{2}\times 3,375-59,319=0
Subtract 59,319 from both sides.
3,375x^{2}-59,319=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3,375\left(-59,319\right)}}{2\times 3,375}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3,375 for a, 0 for b, and -59,319 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3,375\left(-59,319\right)}}{2\times 3,375}
Square 0.
x=\frac{0±\sqrt{-13,5\left(-59,319\right)}}{2\times 3,375}
Multiply -4 times 3,375.
x=\frac{0±\sqrt{800,8065}}{2\times 3,375}
Multiply -13,5 times -59,319 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{351\sqrt{65}}{100}}{2\times 3,375}
Take the square root of 800,8065.
x=\frac{0±\frac{351\sqrt{65}}{100}}{6,75}
Multiply 2 times 3,375.
x=\frac{13\sqrt{65}}{25}
Now solve the equation x=\frac{0±\frac{351\sqrt{65}}{100}}{6,75} when ± is plus.
x=-\frac{13\sqrt{65}}{25}
Now solve the equation x=\frac{0±\frac{351\sqrt{65}}{100}}{6,75} when ± is minus.
x=\frac{13\sqrt{65}}{25} x=-\frac{13\sqrt{65}}{25}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}