Evaluate
\left(3-\lambda \right)\left(\lambda \left(1-\lambda \right)\right)^{2}
Expand
3\lambda ^{2}-7\lambda ^{3}+5\lambda ^{4}-\lambda ^{5}
Share
Copied to clipboard
\left(1-\lambda \right)^{2}\left(-\lambda \right)\left(-\lambda \right)\left(3-\lambda \right)
Multiply 1-\lambda and 1-\lambda to get \left(1-\lambda \right)^{2}.
\left(1-\lambda \right)^{2}\left(-\lambda \right)^{2}\left(3-\lambda \right)
Multiply -\lambda and -\lambda to get \left(-\lambda \right)^{2}.
\left(1-2\lambda +\lambda ^{2}\right)\left(-\lambda \right)^{2}\left(3-\lambda \right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\lambda \right)^{2}.
\left(1-2\lambda +\lambda ^{2}\right)\lambda ^{2}\left(3-\lambda \right)
Calculate -\lambda to the power of 2 and get \lambda ^{2}.
\left(\lambda ^{2}-2\lambda ^{3}+\lambda ^{4}\right)\left(3-\lambda \right)
Use the distributive property to multiply 1-2\lambda +\lambda ^{2} by \lambda ^{2}.
3\lambda ^{2}-\lambda ^{3}-6\lambda ^{3}+2\lambda ^{4}+3\lambda ^{4}-\lambda ^{5}
Apply the distributive property by multiplying each term of \lambda ^{2}-2\lambda ^{3}+\lambda ^{4} by each term of 3-\lambda .
3\lambda ^{2}-7\lambda ^{3}+2\lambda ^{4}+3\lambda ^{4}-\lambda ^{5}
Combine -\lambda ^{3} and -6\lambda ^{3} to get -7\lambda ^{3}.
3\lambda ^{2}-7\lambda ^{3}+5\lambda ^{4}-\lambda ^{5}
Combine 2\lambda ^{4} and 3\lambda ^{4} to get 5\lambda ^{4}.
\left(1-\lambda \right)^{2}\left(-\lambda \right)\left(-\lambda \right)\left(3-\lambda \right)
Multiply 1-\lambda and 1-\lambda to get \left(1-\lambda \right)^{2}.
\left(1-\lambda \right)^{2}\left(-\lambda \right)^{2}\left(3-\lambda \right)
Multiply -\lambda and -\lambda to get \left(-\lambda \right)^{2}.
\left(1-2\lambda +\lambda ^{2}\right)\left(-\lambda \right)^{2}\left(3-\lambda \right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\lambda \right)^{2}.
\left(1-2\lambda +\lambda ^{2}\right)\lambda ^{2}\left(3-\lambda \right)
Calculate -\lambda to the power of 2 and get \lambda ^{2}.
\left(\lambda ^{2}-2\lambda ^{3}+\lambda ^{4}\right)\left(3-\lambda \right)
Use the distributive property to multiply 1-2\lambda +\lambda ^{2} by \lambda ^{2}.
3\lambda ^{2}-\lambda ^{3}-6\lambda ^{3}+2\lambda ^{4}+3\lambda ^{4}-\lambda ^{5}
Apply the distributive property by multiplying each term of \lambda ^{2}-2\lambda ^{3}+\lambda ^{4} by each term of 3-\lambda .
3\lambda ^{2}-7\lambda ^{3}+2\lambda ^{4}+3\lambda ^{4}-\lambda ^{5}
Combine -\lambda ^{3} and -6\lambda ^{3} to get -7\lambda ^{3}.
3\lambda ^{2}-7\lambda ^{3}+5\lambda ^{4}-\lambda ^{5}
Combine 2\lambda ^{4} and 3\lambda ^{4} to get 5\lambda ^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}