Solve for x
x=-\frac{4-\psi -6\lambda +\lambda \psi +\lambda ^{2}-\lambda ^{3}}{4\left(\lambda -1\right)}
\lambda \neq 1
Graph
Share
Copied to clipboard
\lambda ^{2}-4x+2-\lambda ^{3}+4x\lambda -2\lambda +2\left(1-2\lambda \right)+\psi \left(\lambda -1\right)=0
Use the distributive property to multiply 1-\lambda by \lambda ^{2}-4x+2.
\lambda ^{2}-4x+2-\lambda ^{3}+4x\lambda -2\lambda +2-4\lambda +\psi \left(\lambda -1\right)=0
Use the distributive property to multiply 2 by 1-2\lambda .
\lambda ^{2}-4x+4-\lambda ^{3}+4x\lambda -2\lambda -4\lambda +\psi \left(\lambda -1\right)=0
Add 2 and 2 to get 4.
\lambda ^{2}-4x+4-\lambda ^{3}+4x\lambda -6\lambda +\psi \left(\lambda -1\right)=0
Combine -2\lambda and -4\lambda to get -6\lambda .
\lambda ^{2}-4x+4-\lambda ^{3}+4x\lambda -6\lambda +\psi \lambda -\psi =0
Use the distributive property to multiply \psi by \lambda -1.
-4x+4-\lambda ^{3}+4x\lambda -6\lambda +\psi \lambda -\psi =-\lambda ^{2}
Subtract \lambda ^{2} from both sides. Anything subtracted from zero gives its negation.
-4x-\lambda ^{3}+4x\lambda -6\lambda +\psi \lambda -\psi =-\lambda ^{2}-4
Subtract 4 from both sides.
-4x+4x\lambda -6\lambda +\psi \lambda -\psi =-\lambda ^{2}-4+\lambda ^{3}
Add \lambda ^{3} to both sides.
-4x+4x\lambda +\psi \lambda -\psi =-\lambda ^{2}-4+\lambda ^{3}+6\lambda
Add 6\lambda to both sides.
-4x+4x\lambda -\psi =-\lambda ^{2}-4+\lambda ^{3}+6\lambda -\psi \lambda
Subtract \psi \lambda from both sides.
-4x+4x\lambda =-\lambda ^{2}-4+\lambda ^{3}+6\lambda -\psi \lambda +\psi
Add \psi to both sides.
\left(-4+4\lambda \right)x=-\lambda ^{2}-4+\lambda ^{3}+6\lambda -\psi \lambda +\psi
Combine all terms containing x.
\left(4\lambda -4\right)x=\lambda ^{3}-\lambda ^{2}-\lambda \psi +6\lambda +\psi -4
The equation is in standard form.
\frac{\left(4\lambda -4\right)x}{4\lambda -4}=\frac{\lambda ^{3}-\lambda ^{2}-\lambda \psi +6\lambda +\psi -4}{4\lambda -4}
Divide both sides by 4\lambda -4.
x=\frac{\lambda ^{3}-\lambda ^{2}-\lambda \psi +6\lambda +\psi -4}{4\lambda -4}
Dividing by 4\lambda -4 undoes the multiplication by 4\lambda -4.
x=\frac{\lambda ^{3}-\lambda ^{2}-\lambda \psi +6\lambda +\psi -4}{4\left(\lambda -1\right)}
Divide -\lambda ^{2}-4+\lambda ^{3}+6\lambda -\psi \lambda +\psi by 4\lambda -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}