Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1-\frac{1}{2}a+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-\frac{1}{4}\right)^{2}.
1-\frac{1}{2}a+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Use the distributive property to multiply 8 by a^{2}-\frac{1}{2}a+\frac{1}{16}.
1-\frac{9}{2}a+8a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Combine -\frac{1}{2}a and -4a to get -\frac{9}{2}a.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Add 1 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Consider \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
Expand \left(\frac{3}{2}a\right)^{2}.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\frac{9}{4}a^{2}-1+5a
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{3}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}-1+5a
Combine 8a^{2} and \frac{9}{4}a^{2} to get \frac{41}{4}a^{2}.
\frac{1}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}+5a
Subtract 1 from \frac{3}{2} to get \frac{1}{2}.
\frac{1}{2}+\frac{1}{2}a+\frac{41}{4}a^{2}
Combine -\frac{9}{2}a and 5a to get \frac{1}{2}a.
1-\frac{1}{2}a+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-\frac{1}{4}\right)^{2}.
1-\frac{1}{2}a+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Use the distributive property to multiply 8 by a^{2}-\frac{1}{2}a+\frac{1}{16}.
1-\frac{9}{2}a+8a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Combine -\frac{1}{2}a and -4a to get -\frac{9}{2}a.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Add 1 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Consider \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
Expand \left(\frac{3}{2}a\right)^{2}.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\frac{9}{4}a^{2}-1+5a
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{3}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}-1+5a
Combine 8a^{2} and \frac{9}{4}a^{2} to get \frac{41}{4}a^{2}.
\frac{1}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}+5a
Subtract 1 from \frac{3}{2} to get \frac{1}{2}.
\frac{1}{2}+\frac{1}{2}a+\frac{41}{4}a^{2}
Combine -\frac{9}{2}a and 5a to get \frac{1}{2}a.