Verify
false
Share
Copied to clipboard
60-60\sqrt{\left(-2\right)^{2}}-60\sqrt{\frac{144+25}{144}}+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Multiply both sides of the equation by 60, the least common multiple of 5,12,3.
60-60\sqrt{4}-60\sqrt{\frac{144+25}{144}}+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Calculate -2 to the power of 2 and get 4.
60-60\times 2-60\sqrt{\frac{144+25}{144}}+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Calculate the square root of 4 and get 2.
60-120-60\sqrt{\frac{144+25}{144}}+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Multiply -60 and 2 to get -120.
-60-60\sqrt{\frac{144+25}{144}}+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Subtract 120 from 60 to get -60.
-60-60\sqrt{\frac{169}{144}}+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Add 144 and 25 to get 169.
-60-60\times \frac{13}{12}+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Rewrite the square root of the division \frac{169}{144} as the division of square roots \frac{\sqrt{169}}{\sqrt{144}}. Take the square root of both numerator and denominator.
-60-65+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Multiply -60 and \frac{13}{12} to get -65.
-125+24\sqrt[3]{-125}=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Subtract 65 from -60 to get -125.
-125+24\left(-5\right)=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Calculate \sqrt[3]{-125} and get -5.
-125-120=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Multiply 24 and -5 to get -120.
-245=60\left(-\frac{5\times 12+1}{12}\right)\times 2\times \frac{7}{3}
Subtract 120 from -125 to get -245.
-245=60\left(-\frac{60+1}{12}\right)\times 2\times \frac{7}{3}
Multiply 5 and 12 to get 60.
-245=60\left(-\frac{61}{12}\right)\times 2\times \frac{7}{3}
Add 60 and 1 to get 61.
-245=-305\times 2\times \frac{7}{3}
Multiply 60 and -\frac{61}{12} to get -305.
-245=-610\times \frac{7}{3}
Multiply -305 and 2 to get -610.
-245=-\frac{4270}{3}
Multiply -610 and \frac{7}{3} to get -\frac{4270}{3}.
-\frac{735}{3}=-\frac{4270}{3}
Convert -245 to fraction -\frac{735}{3}.
\text{false}
Compare -\frac{735}{3} and -\frac{4270}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}