Evaluate
0
Factor
0
Share
Copied to clipboard
1\left(6\times \frac{\sqrt{1}}{\sqrt{27}}-\frac{2}{3}\sqrt{18}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{27}} as the division of square roots \frac{\sqrt{1}}{\sqrt{27}}.
1\left(6\times \frac{1}{\sqrt{27}}-\frac{2}{3}\sqrt{18}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Calculate the square root of 1 and get 1.
1\left(6\times \frac{1}{3\sqrt{3}}-\frac{2}{3}\sqrt{18}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
1\left(6\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\frac{2}{3}\sqrt{18}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Rationalize the denominator of \frac{1}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
1\left(6\times \frac{\sqrt{3}}{3\times 3}-\frac{2}{3}\sqrt{18}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
The square of \sqrt{3} is 3.
1\left(6\times \frac{\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Multiply 3 and 3 to get 9.
1\left(\frac{6\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Express 6\times \frac{\sqrt{3}}{9} as a single fraction.
1\left(\frac{6\sqrt{3}}{9}-\frac{2}{3}\times 3\sqrt{2}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
1\left(\frac{6\sqrt{3}}{9}-2\sqrt{2}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Cancel out 3 and 3.
1\left(\frac{6\sqrt{3}}{9}+\frac{9\left(-2\right)\sqrt{2}}{9}\right)-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{2} times \frac{9}{9}.
1\times \frac{6\sqrt{3}+9\left(-2\right)\sqrt{2}}{9}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Since \frac{6\sqrt{3}}{9} and \frac{9\left(-2\right)\sqrt{2}}{9} have the same denominator, add them by adding their numerators.
1\times \frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Do the multiplications in 6\sqrt{3}+9\left(-2\right)\sqrt{2}.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Express 1\times \frac{6\sqrt{3}-18\sqrt{2}}{9} as a single fraction.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{\sqrt{4}}{\sqrt{3}}-4\sqrt{\frac{1}{2}}\right)
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2}{\sqrt{3}}-4\sqrt{\frac{1}{2}}\right)
Calculate the square root of 4 and get 2.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-4\sqrt{\frac{1}{2}}\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2\sqrt{3}}{3}-4\sqrt{\frac{1}{2}}\right)
The square of \sqrt{3} is 3.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{1}}{\sqrt{2}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{1}{\sqrt{2}}\right)
Calculate the square root of 1 and get 1.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{2}\right)
The square of \sqrt{2} is 2.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2\sqrt{3}}{3}-2\sqrt{2}\right)
Cancel out 2, the greatest common factor in 4 and 2.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\left(\frac{2\sqrt{3}}{3}+\frac{3\left(-2\right)\sqrt{2}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{2} times \frac{3}{3}.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\frac{2\sqrt{3}+3\left(-2\right)\sqrt{2}}{3}
Since \frac{2\sqrt{3}}{3} and \frac{3\left(-2\right)\sqrt{2}}{3} have the same denominator, add them by adding their numerators.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\frac{2\sqrt{3}-6\sqrt{2}}{3}
Do the multiplications in 2\sqrt{3}+3\left(-2\right)\sqrt{2}.
\frac{6\sqrt{3}-18\sqrt{2}}{9}-\frac{3\left(2\sqrt{3}-6\sqrt{2}\right)}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 3 is 9. Multiply \frac{2\sqrt{3}-6\sqrt{2}}{3} times \frac{3}{3}.
\frac{6\sqrt{3}-18\sqrt{2}-3\left(2\sqrt{3}-6\sqrt{2}\right)}{9}
Since \frac{6\sqrt{3}-18\sqrt{2}}{9} and \frac{3\left(2\sqrt{3}-6\sqrt{2}\right)}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{3}-18\sqrt{2}-6\sqrt{3}+18\sqrt{2}}{9}
Do the multiplications in 6\sqrt{3}-18\sqrt{2}-3\left(2\sqrt{3}-6\sqrt{2}\right).
\frac{0}{9}
Do the calculations in 6\sqrt{3}-18\sqrt{2}-6\sqrt{3}+18\sqrt{2}.
0
Zero divided by any non-zero number gives zero.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}