Evaluate
\frac{1}{6}\approx 0.166666667
Factor
\frac{1}{2 \cdot 3} = 0.16666666666666666
Share
Copied to clipboard
\frac{\frac{1\times 3+2}{3}-\frac{1}{3}}{1\times \frac{7\times 2+2}{2}}
Divide 7 by 7 to get 1.
\frac{\frac{3+2}{3}-\frac{1}{3}}{1\times \frac{7\times 2+2}{2}}
Multiply 1 and 3 to get 3.
\frac{\frac{5}{3}-\frac{1}{3}}{1\times \frac{7\times 2+2}{2}}
Add 3 and 2 to get 5.
\frac{\frac{5-1}{3}}{1\times \frac{7\times 2+2}{2}}
Since \frac{5}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{3}}{1\times \frac{7\times 2+2}{2}}
Subtract 1 from 5 to get 4.
\frac{\frac{4}{3}}{1\times \frac{14+2}{2}}
Multiply 7 and 2 to get 14.
\frac{\frac{4}{3}}{1\times \frac{16}{2}}
Add 14 and 2 to get 16.
\frac{\frac{4}{3}}{1\times 8}
Divide 16 by 2 to get 8.
\frac{\frac{4}{3}}{8}
Multiply 1 and 8 to get 8.
\frac{4}{3\times 8}
Express \frac{\frac{4}{3}}{8} as a single fraction.
\frac{4}{24}
Multiply 3 and 8 to get 24.
\frac{1}{6}
Reduce the fraction \frac{4}{24} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}