( 1 \frac { 1 } { 2 } - \frac { 1 } { 3 } ) : ( - \frac { 1 } { 6 } ) < 10,5 : ( - 2,1 )
Verify
true
Share
Copied to clipboard
\frac{\frac{2+1}{2}-\frac{1}{3}}{-\frac{1}{6}}<\frac{10,5}{-2,1}
Multiply 1 and 2 to get 2.
\frac{\frac{3}{2}-\frac{1}{3}}{-\frac{1}{6}}<\frac{10,5}{-2,1}
Add 2 and 1 to get 3.
\frac{\frac{9}{6}-\frac{2}{6}}{-\frac{1}{6}}<\frac{10,5}{-2,1}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{9-2}{6}}{-\frac{1}{6}}<\frac{10,5}{-2,1}
Since \frac{9}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{6}}{-\frac{1}{6}}<\frac{10,5}{-2,1}
Subtract 2 from 9 to get 7.
\frac{7}{6}\left(-6\right)<\frac{10,5}{-2,1}
Divide \frac{7}{6} by -\frac{1}{6} by multiplying \frac{7}{6} by the reciprocal of -\frac{1}{6}.
\frac{7\left(-6\right)}{6}<\frac{10,5}{-2,1}
Express \frac{7}{6}\left(-6\right) as a single fraction.
\frac{-42}{6}<\frac{10,5}{-2,1}
Multiply 7 and -6 to get -42.
-7<\frac{10,5}{-2,1}
Divide -42 by 6 to get -7.
-7<\frac{105}{-21}
Expand \frac{10,5}{-2,1} by multiplying both numerator and the denominator by 10.
-7<-5
Divide 105 by -21 to get -5.
\text{true}
Compare -7 and -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}