Skip to main content
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

1+2k^{2}+\left(k^{2}\right)^{2}=16k^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+k^{2}\right)^{2}.
1+2k^{2}+k^{4}=16k^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1+2k^{2}+k^{4}-16k^{2}=0
Subtract 16k^{2} from both sides.
1-14k^{2}+k^{4}=0
Combine 2k^{2} and -16k^{2} to get -14k^{2}.
t^{2}-14t+1=0
Substitute t for k^{2}.
t=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -14 for b, and 1 for c in the quadratic formula.
t=\frac{14±8\sqrt{3}}{2}
Do the calculations.
t=4\sqrt{3}+7 t=7-4\sqrt{3}
Solve the equation t=\frac{14±8\sqrt{3}}{2} when ± is plus and when ± is minus.
k=-\left(\sqrt{3}+2\right) k=\sqrt{3}+2 k=-\left(2-\sqrt{3}\right) k=2-\sqrt{3}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for each t.
1+2k^{2}+\left(k^{2}\right)^{2}=16k^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+k^{2}\right)^{2}.
1+2k^{2}+k^{4}=16k^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1+2k^{2}+k^{4}-16k^{2}=0
Subtract 16k^{2} from both sides.
1-14k^{2}+k^{4}=0
Combine 2k^{2} and -16k^{2} to get -14k^{2}.
t^{2}-14t+1=0
Substitute t for k^{2}.
t=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -14 for b, and 1 for c in the quadratic formula.
t=\frac{14±8\sqrt{3}}{2}
Do the calculations.
t=4\sqrt{3}+7 t=7-4\sqrt{3}
Solve the equation t=\frac{14±8\sqrt{3}}{2} when ± is plus and when ± is minus.
k=\sqrt{3}+2 k=-\left(\sqrt{3}+2\right) k=2-\sqrt{3} k=-\left(2-\sqrt{3}\right)
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for each t.