Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{2-i}{1+i}
Divide both sides by 1+i.
z=\frac{\left(2-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{2-i}{1+i} by the complex conjugate of the denominator, 1-i.
z=\frac{\left(2-i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(2-i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{2\times 1+2\left(-i\right)-i-\left(-i^{2}\right)}{2}
Multiply complex numbers 2-i and 1-i like you multiply binomials.
z=\frac{2\times 1+2\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}
By definition, i^{2} is -1.
z=\frac{2-2i-i-1}{2}
Do the multiplications in 2\times 1+2\left(-i\right)-i-\left(-\left(-1\right)\right).
z=\frac{2-1+\left(-2-1\right)i}{2}
Combine the real and imaginary parts in 2-2i-i-1.
z=\frac{1-3i}{2}
Do the additions in 2-1+\left(-2-1\right)i.
z=\frac{1}{2}-\frac{3}{2}i
Divide 1-3i by 2 to get \frac{1}{2}-\frac{3}{2}i.