Evaluate
\frac{9}{5}i=1.8i
Real Part
0
Share
Copied to clipboard
\left(1+i\right)\left(\frac{2\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}-\frac{1+i}{3-i}\right)+i\left(i+2\right)
Multiply both numerator and denominator of \frac{2}{3+i} by the complex conjugate of the denominator, 3-i.
\left(1+i\right)\left(\frac{6-2i}{10}-\frac{1+i}{3-i}\right)+i\left(i+2\right)
Do the multiplications in \frac{2\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
\left(1+i\right)\left(\frac{3}{5}-\frac{1}{5}i-\frac{1+i}{3-i}\right)+i\left(i+2\right)
Divide 6-2i by 10 to get \frac{3}{5}-\frac{1}{5}i.
\left(1+i\right)\left(\frac{3}{5}-\frac{1}{5}i-\frac{\left(1+i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}\right)+i\left(i+2\right)
Multiply both numerator and denominator of \frac{1+i}{3-i} by the complex conjugate of the denominator, 3+i.
\left(1+i\right)\left(\frac{3}{5}-\frac{1}{5}i-\frac{2+4i}{10}\right)+i\left(i+2\right)
Do the multiplications in \frac{\left(1+i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\left(1+i\right)\left(\frac{3}{5}-\frac{1}{5}i+\left(-\frac{1}{5}-\frac{2}{5}i\right)\right)+i\left(i+2\right)
Divide 2+4i by 10 to get \frac{1}{5}+\frac{2}{5}i.
\left(1+i\right)\left(\frac{2}{5}-\frac{3}{5}i\right)+i\left(i+2\right)
Add \frac{3}{5}-\frac{1}{5}i and -\frac{1}{5}-\frac{2}{5}i to get \frac{2}{5}-\frac{3}{5}i.
1-\frac{1}{5}i+i\left(i+2\right)
Multiply 1+i and \frac{2}{5}-\frac{3}{5}i to get 1-\frac{1}{5}i.
1-\frac{1}{5}i+\left(-1+2i\right)
Use the distributive property to multiply i by i+2.
\frac{9}{5}i
Do the additions.
Re(\left(1+i\right)\left(\frac{2\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}-\frac{1+i}{3-i}\right)+i\left(i+2\right))
Multiply both numerator and denominator of \frac{2}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\left(1+i\right)\left(\frac{6-2i}{10}-\frac{1+i}{3-i}\right)+i\left(i+2\right))
Do the multiplications in \frac{2\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
Re(\left(1+i\right)\left(\frac{3}{5}-\frac{1}{5}i-\frac{1+i}{3-i}\right)+i\left(i+2\right))
Divide 6-2i by 10 to get \frac{3}{5}-\frac{1}{5}i.
Re(\left(1+i\right)\left(\frac{3}{5}-\frac{1}{5}i-\frac{\left(1+i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}\right)+i\left(i+2\right))
Multiply both numerator and denominator of \frac{1+i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\left(1+i\right)\left(\frac{3}{5}-\frac{1}{5}i-\frac{2+4i}{10}\right)+i\left(i+2\right))
Do the multiplications in \frac{\left(1+i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\left(1+i\right)\left(\frac{3}{5}-\frac{1}{5}i+\left(-\frac{1}{5}-\frac{2}{5}i\right)\right)+i\left(i+2\right))
Divide 2+4i by 10 to get \frac{1}{5}+\frac{2}{5}i.
Re(\left(1+i\right)\left(\frac{2}{5}-\frac{3}{5}i\right)+i\left(i+2\right))
Add \frac{3}{5}-\frac{1}{5}i and -\frac{1}{5}-\frac{2}{5}i to get \frac{2}{5}-\frac{3}{5}i.
Re(1-\frac{1}{5}i+i\left(i+2\right))
Multiply 1+i and \frac{2}{5}-\frac{3}{5}i to get 1-\frac{1}{5}i.
Re(1-\frac{1}{5}i+\left(-1+2i\right))
Use the distributive property to multiply i by i+2.
Re(\frac{9}{5}i)
Do the additions in 1-\frac{1}{5}i-1+2i.
0
The real part of \frac{9}{5}i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}