Evaluate
32-17a^{4}
Expand
32-17a^{4}
Share
Copied to clipboard
1-\left(4a^{2}\right)^{2}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Consider \left(1-4a^{2}\right)\left(1+4a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-4^{2}\left(a^{2}\right)^{2}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Expand \left(4a^{2}\right)^{2}.
1-4^{2}a^{4}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-16a^{4}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Calculate 4 to the power of 2 and get 16.
1-16a^{4}-\left(\left(a^{2}\right)^{2}-16\right)+15
Consider \left(a^{2}-4\right)\left(a^{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
1-16a^{4}-\left(a^{4}-16\right)+15
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-16a^{4}-a^{4}+16+15
To find the opposite of a^{4}-16, find the opposite of each term.
1-17a^{4}+16+15
Combine -16a^{4} and -a^{4} to get -17a^{4}.
17-17a^{4}+15
Add 1 and 16 to get 17.
32-17a^{4}
Add 17 and 15 to get 32.
1-\left(4a^{2}\right)^{2}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Consider \left(1-4a^{2}\right)\left(1+4a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-4^{2}\left(a^{2}\right)^{2}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Expand \left(4a^{2}\right)^{2}.
1-4^{2}a^{4}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-16a^{4}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Calculate 4 to the power of 2 and get 16.
1-16a^{4}-\left(\left(a^{2}\right)^{2}-16\right)+15
Consider \left(a^{2}-4\right)\left(a^{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
1-16a^{4}-\left(a^{4}-16\right)+15
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-16a^{4}-a^{4}+16+15
To find the opposite of a^{4}-16, find the opposite of each term.
1-17a^{4}+16+15
Combine -16a^{4} and -a^{4} to get -17a^{4}.
17-17a^{4}+15
Add 1 and 16 to get 17.
32-17a^{4}
Add 17 and 15 to get 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}