Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1-\left(4a^{2}\right)^{2}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Consider \left(1-4a^{2}\right)\left(1+4a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-4^{2}\left(a^{2}\right)^{2}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Expand \left(4a^{2}\right)^{2}.
1-4^{2}a^{4}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-16a^{4}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Calculate 4 to the power of 2 and get 16.
1-16a^{4}-\left(\left(a^{2}\right)^{2}-16\right)+15
Consider \left(a^{2}-4\right)\left(a^{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
1-16a^{4}-\left(a^{4}-16\right)+15
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-16a^{4}-a^{4}+16+15
To find the opposite of a^{4}-16, find the opposite of each term.
1-17a^{4}+16+15
Combine -16a^{4} and -a^{4} to get -17a^{4}.
17-17a^{4}+15
Add 1 and 16 to get 17.
32-17a^{4}
Add 17 and 15 to get 32.
1-\left(4a^{2}\right)^{2}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Consider \left(1-4a^{2}\right)\left(1+4a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-4^{2}\left(a^{2}\right)^{2}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Expand \left(4a^{2}\right)^{2}.
1-4^{2}a^{4}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-16a^{4}-\left(a^{2}-4\right)\left(a^{2}+4\right)+15
Calculate 4 to the power of 2 and get 16.
1-16a^{4}-\left(\left(a^{2}\right)^{2}-16\right)+15
Consider \left(a^{2}-4\right)\left(a^{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
1-16a^{4}-\left(a^{4}-16\right)+15
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-16a^{4}-a^{4}+16+15
To find the opposite of a^{4}-16, find the opposite of each term.
1-17a^{4}+16+15
Combine -16a^{4} and -a^{4} to get -17a^{4}.
17-17a^{4}+15
Add 1 and 16 to get 17.
32-17a^{4}
Add 17 and 15 to get 32.