Evaluate
\frac{13\left(a+6\right)}{a-1}
Expand
\frac{13\left(a+6\right)}{a-1}
Share
Copied to clipboard
\left(\frac{a-1}{a-1}+\frac{7}{a-1}\right)\times \frac{13a}{a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-1}{a-1}.
\frac{a-1+7}{a-1}\times \frac{13a}{a}
Since \frac{a-1}{a-1} and \frac{7}{a-1} have the same denominator, add them by adding their numerators.
\frac{a+6}{a-1}\times \frac{13a}{a}
Combine like terms in a-1+7.
\frac{a+6}{a-1}\times 13
Cancel out a in both numerator and denominator.
\frac{\left(a+6\right)\times 13}{a-1}
Express \frac{a+6}{a-1}\times 13 as a single fraction.
\frac{13a+78}{a-1}
Use the distributive property to multiply a+6 by 13.
\left(\frac{a-1}{a-1}+\frac{7}{a-1}\right)\times \frac{13a}{a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-1}{a-1}.
\frac{a-1+7}{a-1}\times \frac{13a}{a}
Since \frac{a-1}{a-1} and \frac{7}{a-1} have the same denominator, add them by adding their numerators.
\frac{a+6}{a-1}\times \frac{13a}{a}
Combine like terms in a-1+7.
\frac{a+6}{a-1}\times 13
Cancel out a in both numerator and denominator.
\frac{\left(a+6\right)\times 13}{a-1}
Express \frac{a+6}{a-1}\times 13 as a single fraction.
\frac{13a+78}{a-1}
Use the distributive property to multiply a+6 by 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}