Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(1+\frac{3}{\left(m-2\right)\left(m+2\right)}\right)\left(1-\frac{3}{m+1}\right)
Factor m^{2}-4.
\left(\frac{\left(m-2\right)\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}+\frac{3}{\left(m-2\right)\left(m+2\right)}\right)\left(1-\frac{3}{m+1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(m-2\right)\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}.
\frac{\left(m-2\right)\left(m+2\right)+3}{\left(m-2\right)\left(m+2\right)}\left(1-\frac{3}{m+1}\right)
Since \frac{\left(m-2\right)\left(m+2\right)}{\left(m-2\right)\left(m+2\right)} and \frac{3}{\left(m-2\right)\left(m+2\right)} have the same denominator, add them by adding their numerators.
\frac{m^{2}+2m-2m-4+3}{\left(m-2\right)\left(m+2\right)}\left(1-\frac{3}{m+1}\right)
Do the multiplications in \left(m-2\right)\left(m+2\right)+3.
\frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)}\left(1-\frac{3}{m+1}\right)
Combine like terms in m^{2}+2m-2m-4+3.
\frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)}\left(\frac{m+1}{m+1}-\frac{3}{m+1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+1}{m+1}.
\frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)}\times \frac{m+1-3}{m+1}
Since \frac{m+1}{m+1} and \frac{3}{m+1} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)}\times \frac{m-2}{m+1}
Combine like terms in m+1-3.
\frac{\left(m^{2}-1\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)\left(m+1\right)}
Multiply \frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)} times \frac{m-2}{m+1} by multiplying numerator times numerator and denominator times denominator.
\frac{m^{2}-1}{\left(m+1\right)\left(m+2\right)}
Cancel out m-2 in both numerator and denominator.
\frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m+2\right)}
Factor the expressions that are not already factored.
\frac{m-1}{m+2}
Cancel out m+1 in both numerator and denominator.
\left(1+\frac{3}{\left(m-2\right)\left(m+2\right)}\right)\left(1-\frac{3}{m+1}\right)
Factor m^{2}-4.
\left(\frac{\left(m-2\right)\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}+\frac{3}{\left(m-2\right)\left(m+2\right)}\right)\left(1-\frac{3}{m+1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(m-2\right)\left(m+2\right)}{\left(m-2\right)\left(m+2\right)}.
\frac{\left(m-2\right)\left(m+2\right)+3}{\left(m-2\right)\left(m+2\right)}\left(1-\frac{3}{m+1}\right)
Since \frac{\left(m-2\right)\left(m+2\right)}{\left(m-2\right)\left(m+2\right)} and \frac{3}{\left(m-2\right)\left(m+2\right)} have the same denominator, add them by adding their numerators.
\frac{m^{2}+2m-2m-4+3}{\left(m-2\right)\left(m+2\right)}\left(1-\frac{3}{m+1}\right)
Do the multiplications in \left(m-2\right)\left(m+2\right)+3.
\frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)}\left(1-\frac{3}{m+1}\right)
Combine like terms in m^{2}+2m-2m-4+3.
\frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)}\left(\frac{m+1}{m+1}-\frac{3}{m+1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m+1}{m+1}.
\frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)}\times \frac{m+1-3}{m+1}
Since \frac{m+1}{m+1} and \frac{3}{m+1} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)}\times \frac{m-2}{m+1}
Combine like terms in m+1-3.
\frac{\left(m^{2}-1\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)\left(m+1\right)}
Multiply \frac{m^{2}-1}{\left(m-2\right)\left(m+2\right)} times \frac{m-2}{m+1} by multiplying numerator times numerator and denominator times denominator.
\frac{m^{2}-1}{\left(m+1\right)\left(m+2\right)}
Cancel out m-2 in both numerator and denominator.
\frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m+2\right)}
Factor the expressions that are not already factored.
\frac{m-1}{m+2}
Cancel out m+1 in both numerator and denominator.