Evaluate
-\frac{5}{x-1}
Expand
-\frac{5}{x-1}
Graph
Share
Copied to clipboard
\frac{\frac{x-1}{x-1}+\frac{1}{x-1}+\frac{1}{x+2}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-1}{x-1}.
\frac{\frac{x-1+1}{x-1}+\frac{1}{x+2}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Since \frac{x-1}{x-1} and \frac{1}{x-1} have the same denominator, add them by adding their numerators.
\frac{\frac{x}{x-1}+\frac{1}{x+2}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Combine like terms in x-1+1.
\frac{\frac{x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+2 is \left(x-1\right)\left(x+2\right). Multiply \frac{x}{x-1} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x-1}{x-1}.
\frac{\frac{x\left(x+2\right)+x-1}{\left(x-1\right)\left(x+2\right)}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Since \frac{x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} and \frac{x-1}{\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+2x+x-1}{\left(x-1\right)\left(x+2\right)}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Do the multiplications in x\left(x+2\right)+x-1.
\frac{\frac{x^{2}+3x-1}{\left(x-1\right)\left(x+2\right)}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Combine like terms in x^{2}+2x+x-1.
\frac{\left(x^{2}+3x-1\right)\left(x^{2}-4\right)}{\left(x-1\right)\left(x+2\right)\left(x^{2}+3x-1\right)}+\frac{9-x^{2}}{x^{2}-4x+3}
Divide \frac{x^{2}+3x-1}{\left(x-1\right)\left(x+2\right)} by \frac{x^{2}+3x-1}{x^{2}-4} by multiplying \frac{x^{2}+3x-1}{\left(x-1\right)\left(x+2\right)} by the reciprocal of \frac{x^{2}+3x-1}{x^{2}-4}.
\frac{x^{2}-4}{\left(x-1\right)\left(x+2\right)}+\frac{9-x^{2}}{x^{2}-4x+3}
Cancel out x^{2}+3x-1 in both numerator and denominator.
\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{9-x^{2}}{x^{2}-4x+3}
Factor the expressions that are not already factored in \frac{x^{2}-4}{\left(x-1\right)\left(x+2\right)}.
\frac{x-2}{x-1}+\frac{9-x^{2}}{x^{2}-4x+3}
Cancel out x+2 in both numerator and denominator.
\frac{x-2}{x-1}+\frac{\left(x-3\right)\left(-x-3\right)}{\left(x-3\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{9-x^{2}}{x^{2}-4x+3}.
\frac{x-2}{x-1}+\frac{-x-3}{x-1}
Cancel out x-3 in both numerator and denominator.
\frac{x-2-x-3}{x-1}
Since \frac{x-2}{x-1} and \frac{-x-3}{x-1} have the same denominator, add them by adding their numerators.
\frac{-5}{x-1}
Combine like terms in x-2-x-3.
\frac{\frac{x-1}{x-1}+\frac{1}{x-1}+\frac{1}{x+2}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-1}{x-1}.
\frac{\frac{x-1+1}{x-1}+\frac{1}{x+2}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Since \frac{x-1}{x-1} and \frac{1}{x-1} have the same denominator, add them by adding their numerators.
\frac{\frac{x}{x-1}+\frac{1}{x+2}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Combine like terms in x-1+1.
\frac{\frac{x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+2 is \left(x-1\right)\left(x+2\right). Multiply \frac{x}{x-1} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x-1}{x-1}.
\frac{\frac{x\left(x+2\right)+x-1}{\left(x-1\right)\left(x+2\right)}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Since \frac{x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} and \frac{x-1}{\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+2x+x-1}{\left(x-1\right)\left(x+2\right)}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Do the multiplications in x\left(x+2\right)+x-1.
\frac{\frac{x^{2}+3x-1}{\left(x-1\right)\left(x+2\right)}}{\frac{x^{2}+3x-1}{x^{2}-4}}+\frac{9-x^{2}}{x^{2}-4x+3}
Combine like terms in x^{2}+2x+x-1.
\frac{\left(x^{2}+3x-1\right)\left(x^{2}-4\right)}{\left(x-1\right)\left(x+2\right)\left(x^{2}+3x-1\right)}+\frac{9-x^{2}}{x^{2}-4x+3}
Divide \frac{x^{2}+3x-1}{\left(x-1\right)\left(x+2\right)} by \frac{x^{2}+3x-1}{x^{2}-4} by multiplying \frac{x^{2}+3x-1}{\left(x-1\right)\left(x+2\right)} by the reciprocal of \frac{x^{2}+3x-1}{x^{2}-4}.
\frac{x^{2}-4}{\left(x-1\right)\left(x+2\right)}+\frac{9-x^{2}}{x^{2}-4x+3}
Cancel out x^{2}+3x-1 in both numerator and denominator.
\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{9-x^{2}}{x^{2}-4x+3}
Factor the expressions that are not already factored in \frac{x^{2}-4}{\left(x-1\right)\left(x+2\right)}.
\frac{x-2}{x-1}+\frac{9-x^{2}}{x^{2}-4x+3}
Cancel out x+2 in both numerator and denominator.
\frac{x-2}{x-1}+\frac{\left(x-3\right)\left(-x-3\right)}{\left(x-3\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{9-x^{2}}{x^{2}-4x+3}.
\frac{x-2}{x-1}+\frac{-x-3}{x-1}
Cancel out x-3 in both numerator and denominator.
\frac{x-2-x-3}{x-1}
Since \frac{x-2}{x-1} and \frac{-x-3}{x-1} have the same denominator, add them by adding their numerators.
\frac{-5}{x-1}
Combine like terms in x-2-x-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}