Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2}{2}+\frac{1}{2}\right)\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Add 2 and 1 to get 3.
\frac{3}{2}\left(1+\frac{1}{4}\right)\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Calculate 2 to the power of 2 and get 4.
\frac{3}{2}\left(\frac{4}{4}+\frac{1}{4}\right)\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Convert 1 to fraction \frac{4}{4}.
\frac{3}{2}\times \frac{4+1}{4}\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{3}{2}\times \frac{5}{4}\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Add 4 and 1 to get 5.
\frac{3\times 5}{2\times 4}\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Multiply \frac{3}{2} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{8}\left(1+\frac{1}{2^{4}}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Do the multiplications in the fraction \frac{3\times 5}{2\times 4}.
\frac{15}{8}\left(1+\frac{1}{16}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Calculate 2 to the power of 4 and get 16.
\frac{15}{8}\left(\frac{16}{16}+\frac{1}{16}\right)\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Convert 1 to fraction \frac{16}{16}.
\frac{15}{8}\times \frac{16+1}{16}\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Since \frac{16}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
\frac{15}{8}\times \frac{17}{16}\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Add 16 and 1 to get 17.
\frac{15\times 17}{8\times 16}\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Multiply \frac{15}{8} times \frac{17}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{255}{128}\left(1+\frac{1}{2^{8}}\right)+\frac{1}{2^{14}}
Do the multiplications in the fraction \frac{15\times 17}{8\times 16}.
\frac{255}{128}\left(1+\frac{1}{256}\right)+\frac{1}{2^{14}}
Calculate 2 to the power of 8 and get 256.
\frac{255}{128}\left(\frac{256}{256}+\frac{1}{256}\right)+\frac{1}{2^{14}}
Convert 1 to fraction \frac{256}{256}.
\frac{255}{128}\times \frac{256+1}{256}+\frac{1}{2^{14}}
Since \frac{256}{256} and \frac{1}{256} have the same denominator, add them by adding their numerators.
\frac{255}{128}\times \frac{257}{256}+\frac{1}{2^{14}}
Add 256 and 1 to get 257.
\frac{255\times 257}{128\times 256}+\frac{1}{2^{14}}
Multiply \frac{255}{128} times \frac{257}{256} by multiplying numerator times numerator and denominator times denominator.
\frac{65535}{32768}+\frac{1}{2^{14}}
Do the multiplications in the fraction \frac{255\times 257}{128\times 256}.
\frac{65535}{32768}+\frac{1}{16384}
Calculate 2 to the power of 14 and get 16384.
\frac{65535}{32768}+\frac{2}{32768}
Least common multiple of 32768 and 16384 is 32768. Convert \frac{65535}{32768} and \frac{1}{16384} to fractions with denominator 32768.
\frac{65535+2}{32768}
Since \frac{65535}{32768} and \frac{2}{32768} have the same denominator, add them by adding their numerators.
\frac{65537}{32768}
Add 65535 and 2 to get 65537.