Evaluate
\frac{8}{3}\approx 2.666666667
Factor
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2.6666666666666665
Share
Copied to clipboard
\left(\frac{3}{3}+\frac{\sqrt{3}}{3}\right)^{2}+\left(1-\frac{\sqrt{3}}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\left(\frac{3+\sqrt{3}}{3}\right)^{2}+\left(1-\frac{\sqrt{3}}{3}\right)^{2}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{\left(3+\sqrt{3}\right)^{2}}{3^{2}}+\left(1-\frac{\sqrt{3}}{3}\right)^{2}
To raise \frac{3+\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+\sqrt{3}\right)^{2}}{3^{2}}+\left(\frac{3}{3}-\frac{\sqrt{3}}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\left(3+\sqrt{3}\right)^{2}}{3^{2}}+\left(\frac{3-\sqrt{3}}{3}\right)^{2}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3+\sqrt{3}\right)^{2}}{3^{2}}+\frac{\left(3-\sqrt{3}\right)^{2}}{3^{2}}
To raise \frac{3-\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3+\sqrt{3}\right)^{2}+\left(3-\sqrt{3}\right)^{2}}{3^{2}}
Since \frac{\left(3+\sqrt{3}\right)^{2}}{3^{2}} and \frac{\left(3-\sqrt{3}\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{9+6\sqrt{3}+\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{\left(3-\sqrt{3}\right)^{2}}{3^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{3}\right)^{2}.
\frac{9+6\sqrt{3}+3}{3^{2}}+\frac{\left(3-\sqrt{3}\right)^{2}}{3^{2}}
The square of \sqrt{3} is 3.
\frac{12+6\sqrt{3}}{3^{2}}+\frac{\left(3-\sqrt{3}\right)^{2}}{3^{2}}
Add 9 and 3 to get 12.
\frac{12+6\sqrt{3}}{9}+\frac{\left(3-\sqrt{3}\right)^{2}}{3^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{12+6\sqrt{3}}{9}+\frac{9-6\sqrt{3}+\left(\sqrt{3}\right)^{2}}{3^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{3}\right)^{2}.
\frac{12+6\sqrt{3}}{9}+\frac{9-6\sqrt{3}+3}{3^{2}}
The square of \sqrt{3} is 3.
\frac{12+6\sqrt{3}}{9}+\frac{12-6\sqrt{3}}{3^{2}}
Add 9 and 3 to get 12.
\frac{12+6\sqrt{3}}{9}+\frac{12-6\sqrt{3}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{12+6\sqrt{3}+12-6\sqrt{3}}{9}
Since \frac{12+6\sqrt{3}}{9} and \frac{12-6\sqrt{3}}{9} have the same denominator, add them by adding their numerators.
\frac{24}{9}
Do the calculations in 12+6\sqrt{3}+12-6\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}