Solve for B
B=\frac{\sqrt{38}}{5}-0.76\approx 0.472882801
B=-\frac{\sqrt{38}}{5}-0.76\approx -1.992882801
Share
Copied to clipboard
0.1444+0.38B+\frac{1}{4}B^{2}=0.38
Calculate 0.38 to the power of 2 and get 0.1444.
0.1444+0.38B+\frac{1}{4}B^{2}-0.38=0
Subtract 0.38 from both sides.
-0.2356+0.38B+\frac{1}{4}B^{2}=0
Subtract 0.38 from 0.1444 to get -0.2356.
\frac{1}{4}B^{2}+0.38B-0.2356=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
B=\frac{-0.38±\sqrt{0.38^{2}-4\times \frac{1}{4}\left(-0.2356\right)}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, 0.38 for b, and -0.2356 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
B=\frac{-0.38±\sqrt{0.1444-4\times \frac{1}{4}\left(-0.2356\right)}}{2\times \frac{1}{4}}
Square 0.38 by squaring both the numerator and the denominator of the fraction.
B=\frac{-0.38±\sqrt{0.1444-\left(-0.2356\right)}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
B=\frac{-0.38±\sqrt{\frac{361+589}{2500}}}{2\times \frac{1}{4}}
Multiply -1 times -0.2356.
B=\frac{-0.38±\sqrt{0.38}}{2\times \frac{1}{4}}
Add 0.1444 to 0.2356 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
B=\frac{-0.38±\frac{\sqrt{38}}{10}}{2\times \frac{1}{4}}
Take the square root of 0.38.
B=\frac{-0.38±\frac{\sqrt{38}}{10}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
B=\frac{\frac{\sqrt{38}}{10}-\frac{19}{50}}{\frac{1}{2}}
Now solve the equation B=\frac{-0.38±\frac{\sqrt{38}}{10}}{\frac{1}{2}} when ± is plus. Add -0.38 to \frac{\sqrt{38}}{10}.
B=\frac{\sqrt{38}}{5}-\frac{19}{25}
Divide -\frac{19}{50}+\frac{\sqrt{38}}{10} by \frac{1}{2} by multiplying -\frac{19}{50}+\frac{\sqrt{38}}{10} by the reciprocal of \frac{1}{2}.
B=\frac{-\frac{\sqrt{38}}{10}-\frac{19}{50}}{\frac{1}{2}}
Now solve the equation B=\frac{-0.38±\frac{\sqrt{38}}{10}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{38}}{10} from -0.38.
B=-\frac{\sqrt{38}}{5}-\frac{19}{25}
Divide -\frac{19}{50}-\frac{\sqrt{38}}{10} by \frac{1}{2} by multiplying -\frac{19}{50}-\frac{\sqrt{38}}{10} by the reciprocal of \frac{1}{2}.
B=\frac{\sqrt{38}}{5}-\frac{19}{25} B=-\frac{\sqrt{38}}{5}-\frac{19}{25}
The equation is now solved.
0.1444+0.38B+\frac{1}{4}B^{2}=0.38
Calculate 0.38 to the power of 2 and get 0.1444.
0.38B+\frac{1}{4}B^{2}=0.38-0.1444
Subtract 0.1444 from both sides.
0.38B+\frac{1}{4}B^{2}=0.2356
Subtract 0.1444 from 0.38 to get 0.2356.
\frac{1}{4}B^{2}+0.38B=0.2356
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{4}B^{2}+0.38B}{\frac{1}{4}}=\frac{0.2356}{\frac{1}{4}}
Multiply both sides by 4.
B^{2}+\frac{0.38}{\frac{1}{4}}B=\frac{0.2356}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
B^{2}+\frac{38}{25}B=\frac{0.2356}{\frac{1}{4}}
Divide 0.38 by \frac{1}{4} by multiplying 0.38 by the reciprocal of \frac{1}{4}.
B^{2}+\frac{38}{25}B=\frac{589}{625}
Divide 0.2356 by \frac{1}{4} by multiplying 0.2356 by the reciprocal of \frac{1}{4}.
B^{2}+\frac{38}{25}B+\left(\frac{19}{25}\right)^{2}=\frac{589}{625}+\left(\frac{19}{25}\right)^{2}
Divide \frac{38}{25}, the coefficient of the x term, by 2 to get \frac{19}{25}. Then add the square of \frac{19}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
B^{2}+\frac{38}{25}B+\frac{361}{625}=\frac{589+361}{625}
Square \frac{19}{25} by squaring both the numerator and the denominator of the fraction.
B^{2}+\frac{38}{25}B+\frac{361}{625}=\frac{38}{25}
Add \frac{589}{625} to \frac{361}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(B+\frac{19}{25}\right)^{2}=\frac{38}{25}
Factor B^{2}+\frac{38}{25}B+\frac{361}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(B+\frac{19}{25}\right)^{2}}=\sqrt{\frac{38}{25}}
Take the square root of both sides of the equation.
B+\frac{19}{25}=\frac{\sqrt{38}}{5} B+\frac{19}{25}=-\frac{\sqrt{38}}{5}
Simplify.
B=\frac{\sqrt{38}}{5}-\frac{19}{25} B=-\frac{\sqrt{38}}{5}-\frac{19}{25}
Subtract \frac{19}{25} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}