Solve for x
x=\frac{\sqrt{2}-1}{5}\approx 0.082842712
x=\frac{-\sqrt{2}-1}{5}\approx -0.482842712
Graph
Share
Copied to clipboard
0.04-0.4x+x^{2}=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.2-x\right)^{2}.
0.04-0.4x+x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
0.04-0.4x-x^{2}=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-0.4x+0.04=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.4\right)±\sqrt{\left(-0.4\right)^{2}-4\left(-1\right)\times 0.04}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -0.4 for b, and 0.04 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.4\right)±\sqrt{0.16-4\left(-1\right)\times 0.04}}{2\left(-1\right)}
Square -0.4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.4\right)±\sqrt{0.16+4\times 0.04}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-0.4\right)±\sqrt{\frac{4+4}{25}}}{2\left(-1\right)}
Multiply 4 times 0.04.
x=\frac{-\left(-0.4\right)±\sqrt{0.32}}{2\left(-1\right)}
Add 0.16 to 0.16 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.4\right)±\frac{2\sqrt{2}}{5}}{2\left(-1\right)}
Take the square root of 0.32.
x=\frac{0.4±\frac{2\sqrt{2}}{5}}{2\left(-1\right)}
The opposite of -0.4 is 0.4.
x=\frac{0.4±\frac{2\sqrt{2}}{5}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{2}+2}{-2\times 5}
Now solve the equation x=\frac{0.4±\frac{2\sqrt{2}}{5}}{-2} when ± is plus. Add 0.4 to \frac{2\sqrt{2}}{5}.
x=\frac{-\sqrt{2}-1}{5}
Divide \frac{2+2\sqrt{2}}{5} by -2.
x=\frac{2-2\sqrt{2}}{-2\times 5}
Now solve the equation x=\frac{0.4±\frac{2\sqrt{2}}{5}}{-2} when ± is minus. Subtract \frac{2\sqrt{2}}{5} from 0.4.
x=\frac{\sqrt{2}-1}{5}
Divide \frac{2-2\sqrt{2}}{5} by -2.
x=\frac{-\sqrt{2}-1}{5} x=\frac{\sqrt{2}-1}{5}
The equation is now solved.
0.04-0.4x+x^{2}=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.2-x\right)^{2}.
0.04-0.4x+x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
0.04-0.4x-x^{2}=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-0.4x-x^{2}=-0.04
Subtract 0.04 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-0.4x=-0.04
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-0.4x}{-1}=-\frac{0.04}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{0.4}{-1}\right)x=-\frac{0.04}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+0.4x=-\frac{0.04}{-1}
Divide -0.4 by -1.
x^{2}+0.4x=0.04
Divide -0.04 by -1.
x^{2}+0.4x+0.2^{2}=0.04+0.2^{2}
Divide 0.4, the coefficient of the x term, by 2 to get 0.2. Then add the square of 0.2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.4x+0.04=\frac{1+1}{25}
Square 0.2 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.4x+0.04=0.08
Add 0.04 to 0.04 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.2\right)^{2}=0.08
Factor x^{2}+0.4x+0.04. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.2\right)^{2}}=\sqrt{0.08}
Take the square root of both sides of the equation.
x+0.2=\frac{\sqrt{2}}{5} x+0.2=-\frac{\sqrt{2}}{5}
Simplify.
x=\frac{\sqrt{2}-1}{5} x=\frac{-\sqrt{2}-1}{5}
Subtract 0.2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}