( 0,3 + \frac { 1 } { 2 } ) ^ { 2 } \cdot [ ( \frac { 1 } { 3 } ) ^ { - 2 } - ( \frac { 14 } { 5 } ) ^ { 2 } ] ^ { - 1 }
Evaluate
\frac{16}{29}\approx 0,551724138
Factor
\frac{2 ^ {4}}{29} = 0.5517241379310345
Share
Copied to clipboard
\left(\frac{4}{5}\right)^{2}\left(\left(\frac{1}{3}\right)^{-2}-\left(\frac{14}{5}\right)^{2}\right)^{-1}
Add 0,3 and \frac{1}{2} to get \frac{4}{5}.
\frac{16}{25}\left(\left(\frac{1}{3}\right)^{-2}-\left(\frac{14}{5}\right)^{2}\right)^{-1}
Calculate \frac{4}{5} to the power of 2 and get \frac{16}{25}.
\frac{16}{25}\left(9-\left(\frac{14}{5}\right)^{2}\right)^{-1}
Calculate \frac{1}{3} to the power of -2 and get 9.
\frac{16}{25}\left(9-\frac{196}{25}\right)^{-1}
Calculate \frac{14}{5} to the power of 2 and get \frac{196}{25}.
\frac{16}{25}\times \left(\frac{29}{25}\right)^{-1}
Subtract \frac{196}{25} from 9 to get \frac{29}{25}.
\frac{16}{25}\times \frac{25}{29}
Calculate \frac{29}{25} to the power of -1 and get \frac{25}{29}.
\frac{16}{29}
Multiply \frac{16}{25} and \frac{25}{29} to get \frac{16}{29}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}