( 0,2 - \frac { 4 } { 3 } ) ( - \frac { 5 } { 8 } ) - ( - \frac { 5 } { 12 } - 9 \div 5 ) : 2 \frac { 1 } { 3 } =
Evaluate
\frac{199}{120}\approx 1,658333333
Factor
\frac{199}{3 \cdot 5 \cdot 2 ^ {3}} = 1\frac{79}{120} = 1.6583333333333334
Share
Copied to clipboard
\left(\frac{1}{5}-\frac{4}{3}\right)\left(-\frac{5}{8}\right)-\frac{-\frac{5}{12}-\frac{9}{5}}{\frac{2\times 3+1}{3}}
Convert decimal number 0,2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\left(\frac{3}{15}-\frac{20}{15}\right)\left(-\frac{5}{8}\right)-\frac{-\frac{5}{12}-\frac{9}{5}}{\frac{2\times 3+1}{3}}
Least common multiple of 5 and 3 is 15. Convert \frac{1}{5} and \frac{4}{3} to fractions with denominator 15.
\frac{3-20}{15}\left(-\frac{5}{8}\right)-\frac{-\frac{5}{12}-\frac{9}{5}}{\frac{2\times 3+1}{3}}
Since \frac{3}{15} and \frac{20}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{15}\left(-\frac{5}{8}\right)-\frac{-\frac{5}{12}-\frac{9}{5}}{\frac{2\times 3+1}{3}}
Subtract 20 from 3 to get -17.
\frac{-17\left(-5\right)}{15\times 8}-\frac{-\frac{5}{12}-\frac{9}{5}}{\frac{2\times 3+1}{3}}
Multiply -\frac{17}{15} times -\frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{85}{120}-\frac{-\frac{5}{12}-\frac{9}{5}}{\frac{2\times 3+1}{3}}
Do the multiplications in the fraction \frac{-17\left(-5\right)}{15\times 8}.
\frac{17}{24}-\frac{-\frac{5}{12}-\frac{9}{5}}{\frac{2\times 3+1}{3}}
Reduce the fraction \frac{85}{120} to lowest terms by extracting and canceling out 5.
\frac{17}{24}-\frac{-\frac{25}{60}-\frac{108}{60}}{\frac{2\times 3+1}{3}}
Least common multiple of 12 and 5 is 60. Convert -\frac{5}{12} and \frac{9}{5} to fractions with denominator 60.
\frac{17}{24}-\frac{\frac{-25-108}{60}}{\frac{2\times 3+1}{3}}
Since -\frac{25}{60} and \frac{108}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{24}-\frac{-\frac{133}{60}}{\frac{2\times 3+1}{3}}
Subtract 108 from -25 to get -133.
\frac{17}{24}-\frac{-\frac{133}{60}}{\frac{6+1}{3}}
Multiply 2 and 3 to get 6.
\frac{17}{24}-\frac{-\frac{133}{60}}{\frac{7}{3}}
Add 6 and 1 to get 7.
\frac{17}{24}-\left(-\frac{133}{60}\times \frac{3}{7}\right)
Divide -\frac{133}{60} by \frac{7}{3} by multiplying -\frac{133}{60} by the reciprocal of \frac{7}{3}.
\frac{17}{24}-\frac{-133\times 3}{60\times 7}
Multiply -\frac{133}{60} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{17}{24}-\frac{-399}{420}
Do the multiplications in the fraction \frac{-133\times 3}{60\times 7}.
\frac{17}{24}-\left(-\frac{19}{20}\right)
Reduce the fraction \frac{-399}{420} to lowest terms by extracting and canceling out 21.
\frac{17}{24}+\frac{19}{20}
The opposite of -\frac{19}{20} is \frac{19}{20}.
\frac{85}{120}+\frac{114}{120}
Least common multiple of 24 and 20 is 120. Convert \frac{17}{24} and \frac{19}{20} to fractions with denominator 120.
\frac{85+114}{120}
Since \frac{85}{120} and \frac{114}{120} have the same denominator, add them by adding their numerators.
\frac{199}{120}
Add 85 and 114 to get 199.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}