Solve for a (complex solution)
\left\{\begin{matrix}\\a=dt\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&n=0\end{matrix}\right.
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{a}{t}\text{, }&t\neq 0\\d\in \mathrm{C}\text{, }&n=0\text{ or }\left(a=0\text{ and }t=0\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=dt\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&n=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{a}{t}\text{, }&t\neq 0\\d\in \mathrm{R}\text{, }&n=0\text{ or }\left(a=0\text{ and }t=0\right)\end{matrix}\right.
Share
Copied to clipboard
\left(td-a\right)n=0
Anything plus zero gives itself.
tdn-an=0
Use the distributive property to multiply td-a by n.
-an=-tdn
Subtract tdn from both sides. Anything subtracted from zero gives its negation.
an=tdn
Cancel out -1 on both sides.
na=dnt
The equation is in standard form.
\frac{na}{n}=\frac{dnt}{n}
Divide both sides by n.
a=\frac{dnt}{n}
Dividing by n undoes the multiplication by n.
a=dt
Divide tdn by n.
\left(td-a\right)n=0
Anything plus zero gives itself.
tdn-an=0
Use the distributive property to multiply td-a by n.
tdn=an
Add an to both sides. Anything plus zero gives itself.
ntd=an
The equation is in standard form.
\frac{ntd}{nt}=\frac{an}{nt}
Divide both sides by tn.
d=\frac{an}{nt}
Dividing by tn undoes the multiplication by tn.
d=\frac{a}{t}
Divide an by tn.
\left(td-a\right)n=0
Anything plus zero gives itself.
tdn-an=0
Use the distributive property to multiply td-a by n.
-an=-tdn
Subtract tdn from both sides. Anything subtracted from zero gives its negation.
an=tdn
Cancel out -1 on both sides.
na=dnt
The equation is in standard form.
\frac{na}{n}=\frac{dnt}{n}
Divide both sides by n.
a=\frac{dnt}{n}
Dividing by n undoes the multiplication by n.
a=dt
Divide tdn by n.
\left(td-a\right)n=0
Anything plus zero gives itself.
tdn-an=0
Use the distributive property to multiply td-a by n.
tdn=an
Add an to both sides. Anything plus zero gives itself.
ntd=an
The equation is in standard form.
\frac{ntd}{nt}=\frac{an}{nt}
Divide both sides by tn.
d=\frac{an}{nt}
Dividing by tn undoes the multiplication by tn.
d=\frac{a}{t}
Divide an by tn.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}