Solve for x
x=-\frac{7}{25}=-0.28
Graph
Share
Copied to clipboard
\left(-x\right)^{2}-25+\left(-2x+4\right)^{2}=\left(5x-1\right)\left(x+2\right)
Consider \left(-x-5\right)\left(-x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-25+\left(-2x+4\right)^{2}=\left(5x-1\right)\left(x+2\right)
Calculate -x to the power of 2 and get x^{2}.
x^{2}-25+4x^{2}-16x+16=\left(5x-1\right)\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+4\right)^{2}.
5x^{2}-25-16x+16=\left(5x-1\right)\left(x+2\right)
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}-9-16x=\left(5x-1\right)\left(x+2\right)
Add -25 and 16 to get -9.
5x^{2}-9-16x=5x^{2}+9x-2
Use the distributive property to multiply 5x-1 by x+2 and combine like terms.
5x^{2}-9-16x-5x^{2}=9x-2
Subtract 5x^{2} from both sides.
-9-16x=9x-2
Combine 5x^{2} and -5x^{2} to get 0.
-9-16x-9x=-2
Subtract 9x from both sides.
-9-25x=-2
Combine -16x and -9x to get -25x.
-25x=-2+9
Add 9 to both sides.
-25x=7
Add -2 and 9 to get 7.
x=\frac{7}{-25}
Divide both sides by -25.
x=-\frac{7}{25}
Fraction \frac{7}{-25} can be rewritten as -\frac{7}{25} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}